284 research outputs found

    Role of Elg1 protein in double strand break repair

    Get PDF
    The inaccurate repair of DNA double-strand breaks (DSBs) can result in genomic instability, and additionally cell death or the development of cancer. Elg1, which forms an alternative RFC-like complex with RFC2-5, is required for the maintenance of genome stability in Saccharomyces cerevisiae, and its function has been linked to DNA replication or damage checkpoint response. Here, we show that Elg1 is involved in homologous recombination (HR)-mediated DSB repair. Mutants of elg1 were partially defective in HR induced by methylmethanesufonate (MMS) and phleomycin. Deletion of ELG1 resulted in less efficient repair of phleomycin-induced DSBs in G(2)/M phase-arrested cells. During HR between MAT and HML loci, Elg1 associated with both the MAT locus near the HO endonuclease-induced DSB site, and the HML homologous donor locus. The association of Elg1 with the MAT locus was not dependent on Rad52. However, Elg1 association with the HML locus depended on Rad52. Importantly, we found that two of the later steps in HR-mediated repair of an HO endonuclease-induced DSB, primer extension after strand invasion and ligation, were less efficient in elg1 mutants. Our results suggest that Elg1 is involved in DSB repair by HR

    Dpb11, the budding yeast homolog of TopBP1, functions with the checkpoint clamp in recombination repair

    Get PDF
    Dpb11 is required for the loading of DNA polymerases α and ɛ on to DNA in chromosomal DNA replication and interacts with the DNA damage checkpoint protein Ddc1 in Saccharomyces cerevisiae. The interaction between the homologs of Dpb11 and Ddc1 in human cells and fission yeast is thought to reflect their involvement in the checkpoint response. Here we show that dpb11-1 cells, carrying a mutated Dpb11 that cannot interact with Ddc1, are defective in the repair of methyl methanesulfonate (MMS)-induced DNA damage but not in the DNA damage checkpoint at the permissive temperature. Epistatic analyses suggested that Dpb11 is involved in the Rad51/Rad52-dependent recombination pathway. Ddc1 as well as Dpb11 were required for homologous recombination induced by MMS. Moreover, we found the in vivo association of Dpb11 and Ddc1 with not only the HO-induced double-strand break (DSB) site at MAT locus but also the donor sequence HML during homologous recombination between MAT and HML. Rad51 was required for their association with the HML donor locus, but not with DSB site at the MAT locus. In addition, the association of Dpb11 with the MAT and HML locus after induction of HO-induced DSB was dependent on Ddc1. These results indicate that, besides the involvement in the replication and checkpoint, Dpb11 functions with Ddc1 in the recombination repair process itself

    Colorectal Carcinoma: Local Tumor Staging and Assessment of Lymph Node Metastasis by High-Resolution MR Imaging in Surgical Specimens

    Get PDF
    Purpose. To assess the accuracy of high-resolution MR imaging as a means of evaluating mural invasion and lymph node metastasis by colorectal carcinoma in surgical specimens. Materials and Methods. High-resolution T1-weighted and T2-weighted MR images were obtained in 92 surgical specimens containing 96 colorectal carcinomas. Results. T2-weighted MR images clearly depicted the normal colorectal wall as consisting of seven layers. In 90 (94%) of the 96 carcinomas the depth of mural invasion depicted by MR imaging correlated well with the histopathologic stage. Nodal signal intensity on T2-weighted images (93%) and nodal border contour (93%) were more accurate than nodal size (89%) as indicators of lymph node metastasis, and MR imaging provided the highest accuracy (94%–96%) when they were combined. Conclusion. High-resolution MR imaging is a very accurate method for evaluating both mural invasion and lymph node metastasis by colorectal carcinoma in surgical specimens

    Health consciousness and cervical cancer screening rates in HPV-unvaccinated girls: comparison from HPV-recommended and HPV-recommendation-suspended program periods

    Get PDF
    In Japan, the vast majority of females between 13 and 24 are now unvaccinated for HPV and thus unprotected from HPV-caused cervical cancer. We analyzed the differences among these unvaccinated females regarding their understanding of the HPV vaccine, its role in cervical cancer prevention, and their need for cervical cancer screening–based on whether they refused vaccination when their government’s recommendation for HPV vaccination was still in effect (vaccination-recommended group)–or during the last 7 years, while the government suspension was in effect (recommendation-suspended group). The vaccination-recommended group understood more about the HPV vaccine and the best timing for HPV vaccination than the recommendation-suspended group (p < .0001 and p = .002, respectively). We found that girls in the vaccination-recommended group had more chances to talk with the family about cervical cancer and they were more afraid of acquiring the disease (p < .0001 and p < .0001, respectively). The girls in the recommendation-suspended group tended to feel more inhibited from talking about cervical cancer with friends and acquaintances (p = .0262). The cervical cancer screening rate of the vaccination-recommended group was significantly higher (p = .014)

    SOD1 Is Essential for the Viability of DT40 Cells and Nuclear SOD1 Functions as a Guardian of Genomic DNA

    Get PDF
    Reactive oxygen species (ROSs) are produced during normal cellular metabolism, particularly by respiration in mitochondria, and these ROSs are considered to cause oxidative damage to macromolecules, including DNA. In our previous paper, we found no indication that depletion of mitochondrial superoxide dismutase, SOD2, resulted in an increase in DNA damage. In this paper, we examined SOD1, which is distributed in the cytoplasm, nucleus, and mitochondrial intermembrane space. We generated conditional SOD1 knockout cells from chicken DT40 cells and analyzed their phenotypes. The results revealed that SOD1 was essential for viability and that depletion of SOD1, especially nuclear SOD1, increased sister chromatid exchange (SCE) frequency, suggesting that superoxide is generated in or near the nucleus and that nuclear SOD1 functions as a guardian of the genome. Furthermore, we found that ascorbic acid could offset the defects caused by SOD1 depletion, including cell lethality and increases in SCE frequency and apurinic/apyrimidinic sites

    Protective roles of ascorbic acid in oxidative stress induced by depletion of superoxide dismutase in vertebrate cells.

    Get PDF
    Superoxide dismutases (SODs) are antioxidant proteins that convert superoxide to hydrogen peroxide. In vertebrate cells, SOD1 is mainly present in the cytoplasm, with small levels also found in the nucleus and mitochondrial intermembrane space, and SOD2 is present in the mitochondrial matrix. Previously, the authors conditionally disrupted the SOD1 or SOD2 gene in DT40 cells and found that depletion of SOD1 caused lethality, while depletion of SOD2 led to growth retardation. The observations from previous work showed that the lethality observed in SOD1-depleted cells was completely rescued by ascorbic acid. Ascorbic acid is a water-soluble antioxidant present in biological fluids; however, the exact target for its antioxidant effects is not known. In this study, the authors demonstrated that ascorbic acid offset growth defects observed in SOD2-depleted cells and also lowered mitochondrial superoxide to physiological levels in both SOD1- or SOD2-depleted cells. Moreover, depletion of SOD1 or SOD2 resulted in the accumulation of intracellular oxidative stress, and this increased oxidative stress was reduced by ascorbic acid. Taken together, this study suggests that ascorbic acid can be applied as a nontoxic antioxidant that mimics the functions of cytoplasmic and mitochondrial SODs

    Risk factors for HPV infection and high-grade cervical disease in sexually active Japanese women

    Get PDF
    Funding Information: This work was supported by the Health and Labor Sciences Research Grant [26272001] and the Japanese Agency for Medical Research and Development [JP15ck0106103].Peer reviewedPublisher PD

    Bivalent Human Papillomavirus Vaccine Effectiveness in a Japanese Population : High Vaccine-Type-Specific Effectiveness and Evidence of Cross-Protection

    Get PDF
    Acknowledgments.  We thank Dr Tomomi Egawa-Takata, Dr Akiko Morimoto, Dr Yusuke Tanaka, Ms Asami Yagi, Ms Yuka Watanabe, Ms Sachiko Ono, Ms Anna Ishida, and the administrators of Niigata, Nagaoka, Shibata, Sanjo, Joetsu, and Mitsuke cities for their support in conducting the survey. Financial support. This work was supported by the Health and Labor Sciences Research Grant (26272001) and the Japanese Agency for Medical Research and Development (AMED) under grant number JP15ck0106103 and JP17ck0106369.Peer reviewedPublisher PD

    Focus-formation of replication protein A, activation of checkpoint system and DNA repair synthesis induced by DNA double-strand breaks in Xenopus egg extract

    Get PDF
    金沢大学大学院自然科学研究科 信頼性システム工学The response to DNA damage was analyzed using a cell-free system consisting of Xenopus egg extract and demembranated sperm nuclei. In the absence of DNA-damaging agents, detergent-resistant accumulation of replication protein A appeared in nuclei after a 30 minute incubation, and a considerable portion of the replication protein A signals disappeared during a further 30 minute incubation. Similar replication protein A accumulation was observed in the nuclei after a 30 minute incubation in the extract containing camptothecin, whereas a further 30 minute incubation generated discrete replication protein A foci. The addition of camptothecin also induced formation of γ-H2AX foci, which have been previously shown to localize at sites of DSBs. Analysis of the time course of DNA replication and results obtained using geminin, an inhibitor of licensing for DNA replication, suggest that the discrete replication protein A foci formed in response to camptothecin-induced DNA damage occur in a DNA-replication- dependent manner. When the nuclei were incubated in the extract containing EcoRI, discrete replication protein A foci were observed at 30 minutes as well as at 60 and 90 minutes after incubation, and the focus-formation of replication protein A was not sensitive to geminin. DNA replication was almost completely inhibited in the presence of EcoRI and the inhibition was sensitive to caffeine, an inhibitor of ataxia telangiectasia mutated protein (ATM) and ATM- and Rad3-related protein (ATR). However, the focus-formation of replication protein A in the presence of EcoRI was not influenced by caffeine treatment. EcoRI-induced incorporation of biotin-dUTP into chromatin was observed following geminin-mediated inhibition of DNA replication, suggesting that the incorporation was the result of DNA repair. The biotin-dUTP signal co-localized with replication protein A foci and was not significantly suppressed or stimulated by the addition of caffeine
    corecore