5 research outputs found
Method for Identifying Type of Eddy-Current Displacement Sensor
Eddy-current (EC) displacement sensors are used in a device for measuring the shaft vibration of turbines. An EC displacement sensor is composed of a sensor probe and an impedance/output voltage (Z/V) converter. In a power plant in the U. S., the type of the sensor probe and the displacement from the turbine shaft to the tip of the sensor probe (displacement x) are not controlled. For this reason, when only the Z/V converter breaks down, the plant is stopped and dismantled, and both the Z/V converter and the sensor probe are replaced. This results in two problems, i.e., the unstable supply of electric power when the power plant is stopped and the high cost of dismantling the plant. If both the type of the sensor probe and x are identified during turbine operation, the aforementioned problems could be solved. In this paper, we describe that the three types of the sensor probe and x can be identified by comparing the measured the maximum quality factor Q(EC) (max) and frequency f(o) at Q(EC) (max) with the Q(EC) (max) versus f(o) characteristics of sensor probes.ArticleIEEE TRANSACTIONS ON MAGNETICS. 47(10):3554-3557 (2011)journal articl
Pharmacokinetic/pharmacodynamic evaluation of teicoplanin against Staphylococcus aureus in a murine thigh infection model
Objectives: Pharmacokinetic/pharmacodynamic (PK/PD) analysis using murine infection models is a well-established methodology for optimising antimicrobial therapy. Therefore, we investigated the PK/PD indices of teicoplanin againstStaphylococcus aureus using a murine thigh infection model. Methods: Mice were rendered neutropenic by administration of a two-step dosing of cyclophosphamide. Then, isolates of methicillin-susceptibleS. aureus (MSSA) or methicillin-resistant S. aureus (MRSA) were inoculated into the thighs of neutropenic mice. PK/PD analyses were performed by non-linear least-squared regression using the MULTI program. Results: Target values offCmax/MIC (r2 = 0.94) of teicoplanin for static effect and 1 log10 kill against MSSA were 4.44 and 15.44, respectively. Target values of fAUC24/MIC (r2 = 0.92) of teicoplanin for static effect and 1 log10 kill against MSSA were 30.4 and 70.56, respectively. Target values of fCmax/MIC (r2 = 0.91) of teicoplanin for static effect and 1 log10 kill against MRSA were 8.92 and 14.16, respectively. Target values of fAUC24/MIC (r2 = 0.92) of teicoplanin for static effect and 1 log10 kill against MRSA were 54.8 and 76.4, respectively. Conclusion: These results suggest thatfCmax/MIC and fAUC24/MIC are useful PK/PD indices of teicoplanin against MSSA and MRSA