69 research outputs found
On the Invariant Theory of Weingarten Surfaces in Euclidean Space
We prove that any strongly regular Weingarten surface in Euclidean space
carries locally geometric principal parameters. The basic theorem states that
any strongly regular Weingarten surface is determined up to a motion by its
structural functions and the normal curvature function satisfying a geometric
differential equation. We apply these results to the special Weingarten
surfaces: minimal surfaces, surfaces of constant mean curvature and surfaces of
constant Gauss curvature.Comment: 16 page
Localized induction equation and pseudospherical surfaces
We describe a close connection between the localized induction equation
hierarchy of integrable evolution equations on space curves, and surfaces of
constant negative Gauss curvature.Comment: 21 pages, AMSTeX file. To appear in Journal of Physics A:
Mathematical and Genera
On CP1 and CP2 maps and Weierstrass representations for surfaces immersed into multi-dimensional Euclidean spaces
An extension of the classic Enneper-Weierstrass representation for
conformally parametrised surfaces in multi-dimensional spaces is presented.
This is based on low dimensional CP^1 and CP^2 sigma models which allow the
study of the constant mean curvature (CMC) surfaces immersed into Euclidean 3-
and 8-dimensional spaces, respectively. Relations of Weierstrass type systems
to the equations of these sigma models are established. In particular, it is
demonstrated that the generalised Weierstrass representation can admit
different CMC-surfaces in R^3 which have globally the same Gauss map. A new
procedure for constructing CMC-surfaces in R^n is presented and illustrated in
some explicit examples.Comment: arxiv version is already officia
Surfaces immersed in su(N+1) Lie algebras obtained from the CP^N sigma models
We study some geometrical aspects of two dimensional orientable surfaces
arrising from the study of CP^N sigma models. To this aim we employ an
identification of R^(N(N+2)) with the Lie algebra su(N+1) by means of which we
construct a generalized Weierstrass formula for immersion of such surfaces. The
structural elements of the surface like its moving frame, the Gauss-Weingarten
and the Gauss-Codazzi-Ricci equations are expressed in terms of the solution of
the CP^N model defining it. Further, the first and second fundamental forms,
the Gaussian curvature, the mean curvature vector, the Willmore functional and
the topological charge of surfaces are expressed in terms of this solution. We
present detailed implementation of these results for surfaces immersed in su(2)
and su(3) Lie algebras.Comment: 32 pages, 1 figure; changes: major revision of presentation,
clarifications adde
Nonlinear Differential Equations Satisfied by Certain Classical Modular Forms
A unified treatment is given of low-weight modular forms on \Gamma_0(N),
N=2,3,4, that have Eisenstein series representations. For each N, certain
weight-1 forms are shown to satisfy a coupled system of nonlinear differential
equations, which yields a single nonlinear third-order equation, called a
generalized Chazy equation. As byproducts, a table of divisor function and
theta identities is generated by means of q-expansions, and a transformation
law under \Gamma_0(4) for the second complete elliptic integral is derived.
More generally, it is shown how Picard-Fuchs equations of triangle subgroups of
PSL(2,R) which are hypergeometric equations, yield systems of nonlinear
equations for weight-1 forms, and generalized Chazy equations. Each triangle
group commensurable with \Gamma(1) is treated.Comment: 40 pages, final version, accepted by Manuscripta Mathematic
- …
