69 research outputs found

    On the Invariant Theory of Weingarten Surfaces in Euclidean Space

    Full text link
    We prove that any strongly regular Weingarten surface in Euclidean space carries locally geometric principal parameters. The basic theorem states that any strongly regular Weingarten surface is determined up to a motion by its structural functions and the normal curvature function satisfying a geometric differential equation. We apply these results to the special Weingarten surfaces: minimal surfaces, surfaces of constant mean curvature and surfaces of constant Gauss curvature.Comment: 16 page

    Localized induction equation and pseudospherical surfaces

    Full text link
    We describe a close connection between the localized induction equation hierarchy of integrable evolution equations on space curves, and surfaces of constant negative Gauss curvature.Comment: 21 pages, AMSTeX file. To appear in Journal of Physics A: Mathematical and Genera

    On CP1 and CP2 maps and Weierstrass representations for surfaces immersed into multi-dimensional Euclidean spaces

    Full text link
    An extension of the classic Enneper-Weierstrass representation for conformally parametrised surfaces in multi-dimensional spaces is presented. This is based on low dimensional CP^1 and CP^2 sigma models which allow the study of the constant mean curvature (CMC) surfaces immersed into Euclidean 3- and 8-dimensional spaces, respectively. Relations of Weierstrass type systems to the equations of these sigma models are established. In particular, it is demonstrated that the generalised Weierstrass representation can admit different CMC-surfaces in R^3 which have globally the same Gauss map. A new procedure for constructing CMC-surfaces in R^n is presented and illustrated in some explicit examples.Comment: arxiv version is already officia

    Surfaces immersed in su(N+1) Lie algebras obtained from the CP^N sigma models

    Full text link
    We study some geometrical aspects of two dimensional orientable surfaces arrising from the study of CP^N sigma models. To this aim we employ an identification of R^(N(N+2)) with the Lie algebra su(N+1) by means of which we construct a generalized Weierstrass formula for immersion of such surfaces. The structural elements of the surface like its moving frame, the Gauss-Weingarten and the Gauss-Codazzi-Ricci equations are expressed in terms of the solution of the CP^N model defining it. Further, the first and second fundamental forms, the Gaussian curvature, the mean curvature vector, the Willmore functional and the topological charge of surfaces are expressed in terms of this solution. We present detailed implementation of these results for surfaces immersed in su(2) and su(3) Lie algebras.Comment: 32 pages, 1 figure; changes: major revision of presentation, clarifications adde

    Nonlinear Differential Equations Satisfied by Certain Classical Modular Forms

    Full text link
    A unified treatment is given of low-weight modular forms on \Gamma_0(N), N=2,3,4, that have Eisenstein series representations. For each N, certain weight-1 forms are shown to satisfy a coupled system of nonlinear differential equations, which yields a single nonlinear third-order equation, called a generalized Chazy equation. As byproducts, a table of divisor function and theta identities is generated by means of q-expansions, and a transformation law under \Gamma_0(4) for the second complete elliptic integral is derived. More generally, it is shown how Picard-Fuchs equations of triangle subgroups of PSL(2,R) which are hypergeometric equations, yield systems of nonlinear equations for weight-1 forms, and generalized Chazy equations. Each triangle group commensurable with \Gamma(1) is treated.Comment: 40 pages, final version, accepted by Manuscripta Mathematic
    corecore