19 research outputs found
Biomechanical spinal growth modulation and progressive adolescent scoliosis – a test of the 'vicious cycle' pathogenetic hypothesis: Summary of an electronic focus group debate of the IBSE
There is no generally accepted scientific theory for the causes of adolescent idiopathic scoliosis (AIS). As part of its mission to widen understanding of scoliosis etiology, the International Federated Body on Scoliosis Etiology (IBSE) introduced the electronic focus group (EFG) as a means of increasing debate on knowledge of important topics. This has been designated as an on-line Delphi discussion. The text for this debate was written by Dr Ian A Stokes. It evaluates the hypothesis that in progressive scoliosis vertebral body wedging during adolescent growth results from asymmetric muscular loading in a "vicious cycle" (vicious cycle hypothesis of pathogenesis) by affecting vertebral body growth plates (endplate physes). A frontal plane mathematical simulation tested whether the calculated loading asymmetry created by muscles in a scoliotic spine could explain the observed rate of scoliosis increase by measuring the vertebral growth modulation by altered compression. The model deals only with vertebral (not disc) wedging. It assumes that a pre-existing scoliosis curve initiates the mechanically-modulated alteration of vertebral body growth that in turn causes worsening of the scoliosis, while everything else is anatomically and physiologically 'normal' The results provide quantitative data consistent with the vicious cycle hypothesis. Dr Stokes' biomechanical research engenders controversy. A new speculative concept is proposed of vertebral symphyseal dysplasia with implications for Dr Stokes' research and the etiology of AIS. What is not controversial is the need to test this hypothesis using additional factors in his current model and in three-dimensional quantitative models that incorporate intervertebral discs and simulate thoracic as well as lumbar scoliosis. The growth modulation process in the vertebral body can be viewed as one type of the biologic phenomenon of mechanotransduction. In certain connective tissues this involves the effects of mechanical strain on chondrocytic metabolism a possible target for novel therapeutic intervention
Aneurysmal bone cysts of the pelvis
Twenty-three cases of pelvic aneurysmal bone cysts treated at the Istituto Ortopedico Rizzoli were reviewed after a mean follow-up of 7 years. Eighteen cysts involved the anterior arch, four extended into the iliac wing and the anterior arch, and one invaded the entire hemipelvis. The acetabulum was involved in 56.5% of the cases. Fourteen patients were treated with surgery (curettage 11; resection 3), and five with radiation therapy; two patients had both modalities; two additional patients refused any treatment after biopsy. The overall recurrence rate was 13% (one case after curettage, one after radiation therapy, and one after combined treatment). Significant complications affected the final functional result in four of seven patients who received radiation therapy, while only one minor complication was seen in the surgical group
Sterilization of allograft bone: effects of gamma irradiation on allograft biology and biomechanics
Gamma irradiation from Cobalt 60 sources has been used to terminally sterilize bone allografts for many years. Gamma radiation adversely affects the mechanical and biological properties of bone allografts by degrading the collagen in bone matrix. Specifically, gamma rays split polypeptide chains. In wet specimens irradiation causes release of free radicals via radiolysis of water molecules that induces cross-linking reactions in collagen molecules. These effects are dose dependent and give rise to a dose-dependent decrease in mechanical properties of allograft bone when gamma dose is increased above 25 kGy for cortical bone or 60 kGy for cancellous bone. But at doses between 0 and 25 kGy (standard dose), a clear relationship between gamma dose and mechanical properties has yet to be established. In addition, the effects of gamma radiation on graft remodelling have not been intensively investigated. There is evidence that the activity of osteoclasts is reduced when they are cultured onto irradiated bone slices, that peroxidation of marrow fat increases apoptosis of osteoblasts; and that bacterial products remain after irradiation and induce inflammatory bone resorption following macrophage activation. These effects need considerably more investigation to establish their relevance to clinical outcomes. International consensus on an optimum dose of radiation has not been achieved due to a wide range of confounding variables and individual decisions by tissue banks. This has resulted in the application of doses ranging from 15 to 35 kGy. Here, we provide a critical review on the effects of gamma irradiation on the mechanical and biological properties of allograft bone