894 research outputs found

    Detecting drift of quantum sources: not the de Finetti theorem

    Full text link
    We propose and analyze a method to detect and characterize the drift of a nonstationary quantum source. It generalizes a standard measurement for detecting phase diffusion of laser fields to quantum systems of arbitrary Hilbert space dimension, qubits in particular. We distinguish diffusive and systematic drifts, and examine how quickly one can determine that a source is drifting. We show that for single-photon wavepackets our measurement is implemented by the Hong-Ou-Mandel effect.Comment: 5 pages, 2 figure

    Phase measurements with weak reference pulses

    Get PDF
    Quantum state discrimination for two coherent states with opposite phases as measured relative to a reference pulse is analyzed as functions of the intensities of both the signal states and of the reference pulse. This problem is relevant for Quantum Key Distribution with phase encoding. We consider both the optimum measurements and simple measurements that require only beamsplitters and photodetectors.Comment: 5 pages, 5 figures. I apologize for this boring pape

    Strongly focused light beams interacting with single atoms in free space

    Get PDF
    We construct 3-D solutions of Maxwell's equations that describe Gaussian light beams focused by a strong lens. We investigate the interaction of such beams with single atoms in free space and the interplay between angular and quantum properties of the scattered radiation. We compare the exact results with those obtained with paraxial light beams and from a standard input-output formalism. We put our results in the context of quantum information processing with single atoms.Comment: 9 pages, 9 figure

    Decoherence of multi-dimensional entangled coherent states

    Full text link
    For entangled states of light both the amount of entanglement and the sensitivity to noise generally increase with the number of photons in the state. The entanglement-sensitivity tradeoff is investigated for a particular set of states, multi-dimensional entangled coherent states. Those states possess an arbitrarily large amount of entanglement EE provided the number of photons is at least of order 22E2^{2E}. We calculate how fast that entanglement decays due to photon absorption losses and how much entanglement is left. We find that for very small losses the amount of entanglement lost is equal to 2/log⁡(2)≈2.892/\log(2)\approx 2.89 ebits per absorbed photon, irrespective of the amount of pure-state entanglement EE one started with. In contrast, for larger losses it tends to be the remaining amount of entanglement that is independent of EE. This may provide a useful strategy for creating states with a fixed amount of entanglement.Comment: 6 pages, 5 figure

    Decoherence and the conditions for the classical control of quantum systems

    Full text link
    We find the conditions for one quantum system to function as a classical controller of another quantum system: the controller must be an open system and rapidly diagonalised in the basis of the controller variable that is coupled to the controlled system. This causes decoherence in the controlled system that can be made small if the rate of diagonalisation is fast. We give a detailed example based on the quantum optomechanical control of a mechanical resonator. The resulting equations are similar in structure to recently proposed models for consistently combining quantum and classical stochastic dynamics

    Two roles of relativistic spin operators

    Full text link
    Operators that are associated with several important quantities, like angular momentum, play a double role: they are both generators of the symmetry group and ``observables.'' The analysis of different splittings of angular momentum into "spin" and "orbital" parts reveals the difference between these two roles. We also discuss a relation of different choices of spin observables to the violation of Bell inequalities.Comment: RevTeX 4, 4 pages A discussion on relation of different choices of spin observables to the observed violation of Bell inequalities is added, some misprints corrected and the presentation is clarifie
    • …
    corecore