5 research outputs found
Recommended from our members
Novel CO2-Thickeners for Improved Mobility Control
The objective of this contract was to design, synthesize, and characterize thickening agents for dense carbon dioxide and to evaluate their solubility and viscosity-enhancing potential in CO2
Recommended from our members
Novel CO{sub 2}-thickeners for improved mobility control
The objective of this study was to design, synthesize, and characterize thickening agents for dense carbon dioxide and to evaluate their solubility and viscosity-enhancing potential in CO{sub 2}. Previously, fluoroacrylate homopolymers and fluorinated telechelic ionomers were shown to increase the viscosity of carbon dioxide by a factor of 3--4 at concentrations of 2--3 at concentrations of 4--5 wt%. This report details the findings for several new types of carbon dioxide thickening candidates. Hydrocarbon-fluorocarbon random copolymers, sulfonated hydrocarbon-fluorocarbon random copolymers, semifluorinated trialkyltin fluorides and small hydrogen-bounding compounds were evaluated
Recommended from our members
Novel CO{sub 2}-thickeners for improved mobility control
The objective of this study was to design, synthesize, and characterize thickening agents for dense carbon dioxide and to evaluate their solubility and viscosity-enhancing potential in CO{sub 2}. Previously, hydrocarbon-fluorocarbon random copolymers, sulfated hydrocarbon-fluorocarbon random copolymers, semifluorinated trialkyltin fluorides and small hydrogen-bonding compounds were evaluated. Random copolymers of styrene and heptadecafluorodecyl acrylate yielded substantial increases in viscosity. The amount of styrene varied between 22--40 mole% in the copolymer. Falling cylinder viscometry results indicated that the 29% styrene--71% fluoroacrylate copolymer induced (at 295K and 34.5 Mpa) increases of 10, 60 and 250 at copolymer concentrations of 1, 3 and 5wt%, respectively