69 research outputs found

    Sweeping Preconditioner for the Helmholtz Equation: Moving Perfectly Matched Layers

    Full text link
    This paper introduces a new sweeping preconditioner for the iterative solution of the variable coefficient Helmholtz equation in two and three dimensions. The algorithms follow the general structure of constructing an approximate LDLtLDL^t factorization by eliminating the unknowns layer by layer starting from an absorbing layer or boundary condition. The central idea of this paper is to approximate the Schur complement matrices of the factorization using moving perfectly matched layers (PMLs) introduced in the interior of the domain. Applying each Schur complement matrix is equivalent to solving a quasi-1D problem with a banded LU factorization in the 2D case and to solving a quasi-2D problem with a multifrontal method in the 3D case. The resulting preconditioner has linear application cost and the preconditioned iterative solver converges in a number of iterations that is essentially indefinite of the number of unknowns or the frequency. Numerical results are presented in both two and three dimensions to demonstrate the efficiency of this new preconditioner.Comment: 25 page

    Absorbing boundary conditions for wave-equation migration

    Get PDF
    The standard boundary conditions used at the sides of a seismic section in wave-equation migration generate artificial reflections. These reflections from the edges of the computational grid appear as artifacts in the final section. Padding the section with zero traces on either side adds to the cost of migration and simply delays the inevitable reflections. We develop stable absorbing boundary conditions that annihilate almost all of the artificial reflections. This is demonstrated analytically and with synthetic examples. The absorbing boundary conditions presented can be used with any of the different types of finite-difference wave-equation migration, at essentially no extra cost
    • …
    corecore