11 research outputs found

    Acyclovir for treating varicella in otherwise healthy children and adolescents: a systematic review of randomised controlled trials

    Get PDF
    BACKGROUND: Acyclovir has the potential to shorten the course of chickenpox which may result in reduced costs and morbidity. We conducted a systematic review of randomised controlled trials that evaluated acyclovir for the treatment of chickenpox in otherwise healthy children. METHODS: MEDLINE, EMBASE, and the Cochrane Library were searched. The reference lists of relevant articles were examined and primary authors and Glaxo Wellcome were contacted to identify additional trials. Two reviewers independently screened studies for inclusion, assessed study quality using the Jadad scale and allocation concealment, and extracted data. Continuous data were converted to a weighted mean difference (WMD). Overall estimates were not calculated due to differences in the age groups studied. RESULTS: Three studies were included. Methodological quality was 3 (n = 2) and 4 (n = 1) on the Jadad scale. Acyclovir was associated with a significant reduction in the number of days with fever, from -1.0 (95% CI -1.5,-0.5) to -1.3 (95% CI -2.0,-0.6). Results were inconsistent with respect to the number of days to no new lesions, the maximum number of lesions and relief of pruritis. There were no clinically important differences between acyclovir and placebo with respect to complications or adverse effects. CONCLUSION: Acyclovir appears to be effective in reducing the number of days with fever among otherwise healthy children with chickenpox. The results were inconsistent with respect to the number of days to no new lesions, the maximum number of lesions and the relief of itchiness. The clinical importance of acyclovir treatment in otherwise healthy children remains controversial

    Ecological stability in response to warming

    No full text
    That species' biological rates including metabolism, growth and feeding scale with temperature is well established from warming experiments(1). The interactive influence of these changes on population dynamics, however, remains uncertain. As a result, uncertainty about ecological stability in response under warming remains correspondingly high. In previous studies, severe consumer extinction waves in warmed microcosms(2) were explained in terms of warming-induced destabilization of population oscillations(3). Here, we show that warming stabilizes predator-prey dynamics at the risk of predator extinction. Our results are based on meta-analyses of a global database of temperature effects on metabolic and feeding rates and maximum population size that includes species of different phylogenetic groups and ecosystem types. To unravel population-level consequences we parameterized a bioenergetic predator-prey model(4) and simulated warming effects within ecological, non-evolutionary timescales. In contrast to previous studies(3), we find that warming stabilized population oscillations up to a threshold temperature, which is true for most of the possible parameter combinations. Beyond the threshold level, warming caused predator extinction due to starvation. Predictions were tested in a microbial predator-prey system. Together, our results indicate a major change in how we expect climate change to alter natural ecosystems: warming should increase population stability while undermining species diversity

    Effects of stream predator richness on the prey community and ecosystem attributes.

    No full text
    It is important to understand the role that different predators can have to be able to predict how changes in the predator assemblage may affect the prey community and ecosystem attributes. We tested the effects of different stream predators on macroinvertebrates and ecosystem attributes, in terms of benthic algal biomass and accumulation of detritus, in artificial stream channels. Predator richness was manipulated from zero to three predators, using two fish and one crayfish species, while density was kept equal (n = 6) in all treatments with predators. Predators differed in their foraging strategies (benthic vs. drift feeding fish and omnivorous crayfish) but had overlapping food preferences. We found effects of both predator species richness and identity, but the direction of effects differed depending on the response variable. While there was no effect on macroinvertebrate biomass, diversity of predatory macroinvertebrates decreased with increasing predator species richness, which suggests complementarity between predators for this functional feeding group. Moreover, the accumulation of detritus was affected by both predator species richness and predator identity. Increasing predator species richness decreased detritus accumulation and presence of the benthic fish resulted in the lowest amounts of detritus. Predator identity (the benthic fish), but not predator species richness had a positive effect on benthic algal biomass. Furthermore, the results indicate indirect negative effects between the two ecosystem attributes, with a negative correlation between the amount of detritus and algal biomass. Hence, interactions between different predators directly affected stream community structure, while predator identity had the strongest impact on ecosystem attributes

    Optical Properties of Nanocomposites

    No full text

    Über die (aseptische) Harnstauungsniere

    No full text
    corecore