6 research outputs found
Characterization of surface EMG signals using improved approximate entropy
An improved approximate entropy (ApEn) is presented and applied to characterize surface electromyography (sEMG) signals. In most previous experiments using nonlinear dynamic analysis, this certain processing was often confronted with the problem of insufficient data points and noisy circumstances, which led to unsatisfactory results. Compared with fractal dimension as well as the standard ApEn, the improved ApEn can extract information underlying sEMG signals more efficiently and accurately. The method introduced here can also be applied to other medium-sized and noisy physiological signals
Multifractal analysis of surface EMG signals for assessing muscle fatigue during static contractions
Investigating late holocene climate variability in central mexico using carbon isotope ratios in organic materials and oxygen isotope ratios from diatom silica within lacustrine sediments
Previous studies have shown that moisture availability in the central highlands of Mexico during the last 3000 years has been highly variable, but evidence remains ambiguous since the climatic signal is partially masked by that of human activity. Here we use two isotope systems to provide evidence for environmental change in Laguna Zacapu, MichoacĂĄn covering this time period. Carbon isotope ratios of organic material suggest that there have been fluctuations in the carbon pool related to plant productivity, possibly as a result of changes in the abundance of aquatic plants around the lake margins. The drainage basin and lake have been managed intensively during the 20th century. Lake level apparently fell during the early part of the century, but has been artificially controlled since the 1950s. The oxygen isotope ratios from diatom silica should provide the more unambiguous climate signal, although we show that the interpretation of the diatom oxygen isotope record is far from straight forward. Zacapu is a spring-fed, non-evaporating system and changes in ÎŽ18Odiatom are likely to be a function of changes in ÎŽ18O of precipitation, due to either temperature and salinity variation in the Gulf of Mexico (associated with changes in the Bond cycles from the North Atlantic or the Loop current from the Carribean) and/or changing moisture contributions from different air masses (Gulf of Mexico vs. Pacific). Changes in the Gulf of Mexico are possibly at a resolution comparable to the periodicity we see in the ÎŽ18Odiatom record, although without better dating the comparison is speculative