124 research outputs found
Airway epithelial cells: Current concepts and challenges
The adult human bronchial tree is covered with a continuous layer of epithelial cells that play a critical role in maintaining the conduit for air, and which are central to the defenses of the lung against inhaled environmental concomitants. The epithelial sheet functions as an interdependent unit with the other lung components. Importantly, the structure and/or function of airway epithelium is deranged in major lung disorders, including chronic obstructive pulmonary disease, asthma, and bronchogenic carcinoma. Investigations regarding the airway epithelium have led to many advances over the past few decades, but new developments in genetics and stem cell/ progenitor cell biology have opened the door to understanding how the airway epithelium is developed and maintained, and how it responds to environmental stress. This article provides an overview of the current state of knowledge regarding airway epithelial stem/ progenitor cells, gene expression, cell-cell interactions, and less frequent cell types, and discusses the challenges for future areas of investigation regarding the airway epitheliumin health and disease
A controlled study of adenoviral-vector–mediated gene transfer in the nasal epithelium of patients with cystic fibrosis
Cystic fibrosis is a monogenic disease that deranges multiple systems of ion transport in the airways, culminating in chronic infection and destruction of the lung. The introduction of a normal copy of the cystic fibrosis transmembrane conductance regulator (CFTR) gene into the airway epithelium through gene transfer is an attractive approach to correcting the underlying defects in patients with cystic fibrosis. We tested the feasibility of gene therapy using adenoviral vectors in the nasal epithelium of such patients. An adenoviral vector containing the normal CFTR complementary DNA in four logarithmically increasing doses (estimated multiplicity of infection, 1, 10, 100, and 1000), or vehicle alone, was administered in a randomized, blinded fashion to the nasal epithelium of 12 patients with cystic fibrosis. Gene transfer was quantitated by molecular techniques that detected the expression of CFTR messenger RNA and by functional measurements of transepithelial potential differences (PDs) to assess abnormalities of ion transport specific to cystic fibrosis. The safety of this treatment was monitored by nasal lavage and biopsy to assess inflammation and vector replication. The adenoviral vector was detected in nasal-lavage fluid by culture, the polymerase chain reaction (PCR), or both in a dose-dependent fashion for up to eight days after vector administration. There was molecular evidence of gene transfer by reverse-transcriptase PCR assays or in situ hybridization in five of six patients treated at the two highest doses. However, the percentage of epithelial cells transfected by the vector was very low (<1 percent), and measurement of PD across the epithelium revealed no significant restoration of chloride transport or normalization of sodium transport. At the lower doses of vector, there were no toxic effects. However, at the highest dose there was mucosal inflammation in two of three patients. In patients with cystic fibrosis, adenoviral-vector–mediated transfer of the CFTR gene did not correct functional defects in nasal epithelium, and local inflammatory responses limited the dose of adenovirus that could be administered to overcome the inefficiency of gene transfer. Cystic fibrosis is a recessive genetic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The normal CFTR gene codes for a protein (CFTR) that plays a key part in epithelial transport of salt and water. Mutations in CFTR result in abnormal secretions that obstruct and ultimately damage epithelium in many areas of the body. The principal cause of death among patients with cystic fibrosis is lung disease. Patients who are homozygous for mutations in the CFTR gene have defective cyclic AMP (cAMP)–regulated secretion of chloride8,9 and elevated absorption of sodium
Adenovirus-mediated correction of the genetic defect in hepatocytes from patients with familial hypercholesterolemia
Familial hypercholesterolemia (FH) is an inherited deficiency of LDL receptors that has been an important model for liver-directed gene therapy. We are developing approaches for treating FH that are based on direct delivery of recombinant LDL receptor genes to liver in vivo. As a first step towards this goal, replication-defective recombinant adenoviruses were constructed which contained either the lacZ gene or the human LDL receptor cDNA expressed from a β-actin promoter. Primary cultures of hepatocytes were established from two patients with homozygous FH and one nonFH patient, and subsequently exposed to recombinant adenoviruses at MOIs ranging from 0.1 to 5. Essentially all of the cells expressed high levels of the transgene without demonstrable expression of an early or late adenoviral gene product; the level of recombinant-derived LDL receptor protein in transduced FH hepatocytes exceeded the endogenous levels by at least 20-fold. These studies support the utility of recombinant adenoviruses for efficient transduction of recombinant LDL receptor genes into human FH hepatocytes without expression of viral proteins.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45545/1/11188_2005_Article_BF01233250.pd
Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP violation
The current status of electric dipole moments of diamagnetic atoms which
involves the synergy between atomic experiments and three different theoretical
areas -- particle, nuclear and atomic is reviewed. Various models of particle
physics that predict CP violation, which is necessary for the existence of such
electric dipole moments, are presented. These include the standard model of
particle physics and various extensions of it. Effective hadron level combined
charge conjugation (C) and parity (P) symmetry violating interactions are
derived taking into consideration different ways in which a nucleon interacts
with other nucleons as well as with electrons. Nuclear structure calculations
of the CP-odd nuclear Schiff moment are discussed using the shell model and
other theoretical approaches. Results of the calculations of atomic electric
dipole moments due to the interaction of the nuclear Schiff moment with the
electrons and the P and time-reversal (T) symmetry violating
tensor-pseudotensor electron-nucleus are elucidated using different
relativistic many-body theories. The principles of the measurement of the
electric dipole moments of diamagnetic atoms are outlined. Upper limits for the
nuclear Schiff moment and tensor-pseudotensor coupling constant are obtained
combining the results of atomic experiments and relativistic many-body
theories. The coefficients for the different sources of CP violation have been
estimated at the elementary particle level for all the diamagnetic atoms of
current experimental interest and their implications for physics beyond the
standard model is discussed. Possible improvements of the current results of
the measurements as well as quantum chromodynamics, nuclear and atomic
calculations are suggested.Comment: 46 pages, 19 tables and 16 figures. A review article accepted for
EPJ
Prevention and management of adverse events of novel agents in multiple myeloma: a consensus of the European Myeloma Network
During the last few years, several new drugs have been introduced for treatment of patients with multiple myeloma, which have significantly improved the treatment outcome. All of these novel substances differ at least in part in their mode of action from similar drugs of the same drug class, or are representatives of new drug classes, and as such present with very specific side effect profiles. In this review, we summarize these adverse events, provide information on their prevention, and give practical guidance for monitoring of patients and for management of adverse events
Regenerative Metaplastic Clones in COPD Lung Drive Inflammation and Fibrosis
The hallmark features of COPD (inflammation, fibrosis, and mucus hypersecretion) are driven by distinct pathogenic progenitors which pre-exist as minor populations in healthy lungs but dominate in the disease state relative to normal lung stem cells. © 2020 Elsevier Inc.Chronic obstructive pulmonary disease (COPD) is a progressive condition of chronic bronchitis, small airway obstruction, and emphysema that represents a leading cause of death worldwide. While inflammation, fibrosis, mucus hypersecretion, and metaplastic epithelial lesions are hallmarks of this disease, their origins and dependent relationships remain unclear. Here we apply single-cell cloning technologies to lung tissue of patients with and without COPD. Unlike control lungs, which were dominated by normal distal airway progenitor cells, COPD lungs were inundated by three variant progenitors epigenetically committed to distinct metaplastic lesions. When transplanted to immunodeficient mice, these variant clones induced pathology akin to the mucous and squamous metaplasia, neutrophilic inflammation, and fibrosis seen in COPD. Remarkably, similar variants pre-exist as minor constituents of control and fetal lung and conceivably act in normal processes of immune surveillance. However, these same variants likely catalyze the pathologic and progressive features of COPD when expanded to high numbers
Meta-analysis of Genome-Wide Association Studies for Extraversion: Findings from the Genetics of Personality Consortium
Extraversion is a relatively stable and heritable personality trait associated with numerous psychosocial, lifestyle and health outcomes. Despite its substantial heritability, no genetic variants have been detected in previous genome-wide association (GWA) studies, which may be due to relatively small sample sizes of those studies. Here, we report on a large meta-analysis of GWA studies for extraversion in 63,030 subjects in 29 cohorts. Extraversion item data from multiple personality inventories were harmonized across inventories and cohorts. No genome-wide significant associations were found at the single nucleotide polymorphism (SNP) level but there was one significant hit at the gene level for a long non-coding RNA site (LOC101928162). Genome-wide complex trait analysis in two large cohorts showed that the additive variance explained by common SNPs was not significantly different from zero, but polygenic risk scores, weighted using linkage information, significantly predicted extraversion scores in an independent cohort. These results show that extraversion is a highly polygenic personality trait, with an architecture possibly different from other complex human traits, including other personality traits. Future studies are required to further determine which genetic variants, by what modes of gene action, constitute the heritable nature of extraversion
Limit on oscillation using a jet charge method
A lower limit is set on the B_{s}^{0} meson oscillation parameter \Delta m_{s} using data collected from 1991 to 1994 by the ALEPH detector. Events with a high transverse momentum lepton and a reconstructed secondary vertex are used. The high transverse momentum leptons are produced mainly by b hadron decays, and the sign of the lepton indicates the particle/antiparticle final state in decays of neutral B mesons. The initial state is determined by a jet charge technique using both sides of the event. A maximum likelihood method is used to set a lower limit of \, \Delta m_{s}. The 95\% confidence level lower limit on \Delta m_s ranges between 5.2 and 6.5(\hbar/c^{2})~ps^{-1} when the fraction of b quarks from Z^0 decays that form B_{s}^{0} mesons is varied from 8\% to 16\%. Assuming that the B_{s}^{0} fraction is 12\%, the lower limit would be \Delta m_{s} 6.1(\hbar/c^{2})~ps^{-1} at 95\% confidence level. For x_s = \Delta m_s \, \tau_{B_s}, this limit also gives x_s 8.8 using the B_{s}^{0} lifetime of \tau_{B_s} = 1.55 \pm 0.11~ps and shifting the central value of \tau_{B_s} down by 1\sigma
Measurement of the B lifetime and production rate with D combinations in Z decays
The lifetime of the \bs meson is measured in approximately 3 million hadronic Z decays accumulated using the ALEPH detector at LEP from 1991 to 1994. Seven different \ds decay modes were reconstructed and combined with an opposite sign lepton as evidence of semileptonic \bs decays. Two hundred and eight \dsl candidates satisfy selection criteria designed to ensure precise proper time reconstruction and yield a measured \bs lifetime of \mbox{\result .} Using a larger, less constrained sample of events, the product branching ratio is measured to be \mbox{\pbrresult
- …