3,194 research outputs found

    Writhe of center vortices and topological charge -- an explicit example

    Full text link
    The manner in which continuum center vortices generate topological charge density is elucidated using an explicit example. The example vortex world-surface contains one lone self-intersection point, which contributes a quantum 1/2 to the topological charge. On the other hand, the surface in question is orientable and thus must carry global topological charge zero due to general arguments. Therefore, there must be another contribution, coming from vortex writhe. The latter is known for the lattice analogue of the example vortex considered, where it is quite intuitive. For the vortex in the continuum, including the limit of an infinitely thin vortex, a careful analysis is performed and it is shown how the contribution to the topological charge induced by writhe is distributed over the vortex surface.Comment: 33 latex pages, 10 figures incorporating 14 ps files. Furthermore, the time evolution of the vortex line discussed in this work can be viewed as a gif movie, available for download by following the PostScript link below -- watch for the cute feature at the self-intersection poin

    Influence of a magnetic field on the viscosity of a dilute gas consisting of linear molecules.

    Get PDF
    The viscomagnetic effect for two linear molecules, N2 and CO2, has been calculated in the dilute-gas limit directly from the most accurate ab initio intermolecular potential energy surfaces presently available. The calculations were performed by means of the classical trajectory method in the temperature range from 70 K to 3000 K for N2 and 100 K to 2000 K for CO2, and agreement with the available experimental data is exceptionally good. Above room temperature, where no experimental data are available, the calculations provide the first quantitative information on the magnitude and the behavior of the viscomagnetic effect for these gases. In the presence of a magnetic field, the viscosities of nitrogen and carbon dioxide decrease by at most 0.3% and 0.7%, respectively. The results demonstrate that the viscomagnetic effect is dominated by the contribution of the jj¯ polarization at all temperatures, which shows that the alignment of the rotational axes of the molecules in the presence of a magnetic field is primarily responsible for the viscomagnetic effect

    The Ice-Rock Interface and Basal Sliding Process as Revealed by Direct Observation in Bore Holes and Tunnels

    Get PDF
    The glacier bed, where basal sliding occurs, was reached by cable-tool drilling and sand-pump bailing in seven bore holes in Blue Glacier, Olympic National Park, Washington. Basal sliding velocities measured by bore-hole photography and confirmed by inclinometry are unexpectedly low, ranging from 0.3 to 3.0 cm/day and averaging 1.0 cm/day. This is much less than about half the surface velocity of 15 cm/day, which was the sliding-rate expected from earlier deformation measurements in bore holes made by thermal drilling alone

    Observation of Basal Sliding of Variegated Glacier, Alaska

    Get PDF
    Variegated Glacier is a surge-type glacier in the St Elias mountain range in Alaska. The interval between surges is about 20 years; the last one occurred in 1964 to 1965. This glacier has been studied extensively since 1973 (Bindschadler and others, 1977). Thus far, measurements of ice velocities have been restricted to the surface. They have been analyzed using geophysically measured ice depths, in order to estimate ice velocities in the ice mass and at the base (Bindschadler and others, 1978). From 1973 to 1977 the distribution of annual ice velocities along most of the length of the glacier can be explained primarily by internal deformation without major contribution from sliding at the base. However, the variation of surface velocity with time gives definite indication that sliding occurs in summer and that the average summer rate is increasing progressively from summer to summer and that in a zone 5 to 7 km below the head of the glacier the summer-to-summer increase in inferred sliding rate is especially rapid. This is a notably distinguishing feature, which is probably indicative of a build-up toward the next surge. In order to obtain direct information about sliding-rates and water pressures at the base in this zone, a bore hole was drilled to the bottom of the glacier about 6 km below the glacier head. Observations in the hole started in June 1978 and were continued until 31 July 1978. The hole connected to an englacial water system at a depth of 204 m whereupon the water level dropped gradually to about 100 m below the surface. The last 6 m above-the base at 356 m could be drilled only by means of a cable tool because of the presence of debris-rich ice. Upon reaching the bottom, the water level increased rapidly to the firn water table at about 8 m below surface. Large variations in water level of about 200 m occurred during the following period of observation of 35 d. Major events such as audible icequakes, heavy rainfalls, and a period of unusually high ablation were associated with abrupt increases of water level up to the firn water table. High water pressure at the bottom drove a flow of muddy and sandy water upward in the hole. Consequently high freezing rates in the lower 150 m of the hole produced a very rough bore-hole wall covered with ledges, coral-reef-like features, grooves, and pockets filled with sand. Near the bottom, embedded rocks stuck out of the bore-hole wall. These features were recognized by bore-hole television. The bore-hole bottom consisted of sand which continuously proliferated and washed into the hole. Attempts to remove this sand by means of a sand pump failed, the bailed-out sand being replaced immediately. From bore-hole inclinometry an internal deformation of the ice mass of 0.22 m d^(−1) was obtained. Together with average surface velocity of 0.47 m d^(−1) we get a sliding velocity of 0.25 m d^(−1), averaged over the time of observation. This result confirms the sliding velocities inferred from surface velocity measurements. It also lies on the exponential trend line of increasing summer-to-summer velocities showing a doubling of sliding velocities about every two years (Bindschadler and others, unpublished). This strongly indicates that the next surge is likely to occur in the early eighties. Input of water from the surface probably will play a role in triggering the surge

    Defining postoperative stability in children with radial polydactyly

    Get PDF
    There is little fundamental data on paediatric metacarpophalangeal joint instability in radial polydactyly following surgical reconstruction. We evaluated 27 thumbs in a healthy paediatric population (Group A: eight girls and 19 boys with a mean age of 9.7 years (range 2.7-14.2)) and 12 thumbs following Wassel-IV reconstruction (Group B: eight girls and four boys with a mean age at follow-up of 10.6 years (range 2.7-13.2)). Metacarpophalangeal joint radial deviation, ulnar deviation on stress testing, interphalangeal joint and metacarpophalangeal joint alignment on posterior-anterior radiographs were measured and scored according to parameters defining joint instability. The aim of our study was to provide fundamental data on thumb metacarpophalangeal joint mobility patterns and alignment for further postoperative evaluations in children. The average ulnar deviation and radial deviation on stress testing of the healthy (Group A) metacarpophalangeal joints was 25 degrees (10 degrees-45 degrees) and 30 degrees (10 degrees-55 degrees), respectively. In the operated (Group B) thumbs, the ulnar deviation and radial deviation was greater at 35 degrees (10 degrees-55 degrees) and 30 degrees (10 degrees-70 degrees). Ulnar deviation (UD) of the proximal phalanx at the metacarpophalangeal joint on posterior-anterior radiographs was a mean of 10 degrees (range -10 degrees-30 degrees) in Group B;this was significantly greater than in Group A at a mean of 5 degrees (range -5-20 degrees) (p = 0.029). The mean radial alignment of the interphalangeal joint (distal phalanx relative to the proximal phalanx) was significantly higher in Group B (15 degrees) than Group A (0 degrees) (p = 0.221). In the literature on radial polydactyly, cut off values defining metacarpophalangeal joint instability in children range from 5 degrees to 20 degrees. According to our results, high but physiological metacarpophalangeal joint mobility of the thumb needs to be taken into consideration when evaluating children following reconstruction. Ulnar or radial deviation greater than 30 degrees, in combination with the lack of a definite end point on metacarpophalangeal joint stress testing, may be regarded as unstable. Based on our study on healthy paediatric and reconstructed thumbs, comparison of joint stability with the healthy contralateral hand is recommended in order to define pathological instability

    On the Spectrum of QCD(1+1) with SU(N_c) Currents

    Get PDF
    Extending previous work, we calculate in this note the fermionic spectrum of two-dimensional QCD (QCD_2) in the formulation with SU(N_c) currents. Together with the results in the bosonic sector this allows to address the as yet unresolved task of finding the single-particle states of this theory as a function of the ratio of the numbers of flavors and colors, \lambda=N_f/N_c, anew. We construct the Hamiltonian matrix in DLCQ formulation as an algebraic function of the harmonic resolution K and the continuous parameter \lambda. Amongst the more surprising findings in the fermionic sector chiefly considered here is that the fermion momentum is a function of \lambda. This dependence is necessary in order to reproduce the well-known 't Hooft and large N_f spectra. Remarkably, those spectra have the same single-particle content as the ones in the bosonic sectors. The twist here is the dramatically different sizes of the Fock bases in the two sectors, which makes it possible to interpret in principle all states of the discrete approach. The hope is that some of this insight carries over into the continuum. We also present some new findings concerning the single-particle spectrum of the adjoint theory.Comment: 21 pp., 13 figures, version published in PR

    Indexing TNF-α gene expression using a gene-targeted reporter cell line

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Current cell-based drug screening technologies utilize randomly integrated reporter genes to index transcriptional activity of an endogenous gene of interest. In this context, reporter expression is controlled by known genetic elements that may only partially capture gene regulation and by unknown features of chromatin specific to the integration site. As an alternative technology, we applied highly efficient gene-targeting with recombinant adeno-associated virus to precisely integrate a luciferase reporter gene into exon 1 of the HeLa cell tumor necrosis factor-alpha (<it>TNF-α</it>) gene. Drugs known to induce <it>TNF-α </it>expression were then used to compare the authenticity of gene-targeted and randomly integrated transcriptional reporters.</p> <p>Results</p> <p><it>TNF-α</it>-targeted reporter activity reflected endogenous <it>TNF-α </it>mRNA expression, whereas randomly integrated <it>TNF-α </it>reporter lines gave variable expression in response to transcriptional and epigenetic regulators. 5,6-Dimethylxanthenone-4-acetic acid (DMXAA), currently used in cancer clinical trials to induce <it>TNF-α </it>gene transcription, was only effective at inducing reporter expression from <it>TNF-α </it>gene-targeted cells.</p> <p>Conclusion</p> <p>We conclude that gene-targeted reporter cell lines provide predictive indexing of gene transcription for drug discovery.</p

    Ice XII in its second regime of metastability

    Full text link
    We present neutron powder diffraction results which give unambiguous evidence for the formation of the recently identified new crystalline ice phase[Lobban et al.,Nature, 391, 268, (1998)], labeled ice XII, at completely different conditions. Ice XII is produced here by compressing hexagonal ice I_h at T = 77, 100, 140 and 160 K up to 1.8 GPa. It can be maintained at ambient pressure in the temperature range 1.5 < T < 135 K. High resolution diffraction is carried out at T = 1.5 K and ambient pressure on ice XII and accurate structural properties are obtained from Rietveld refinement. At T = 140 and 160 K additionally ice III/IX is formed. The increasing amount of ice III/IX with increasing temperature gives an upper limit of T ~ 150 K for the successful formation of ice XII with the presented procedure.Comment: 3 Pages of RevTeX, 3 tables, 3 figures (submitted to Physical Review Letters

    On the global hydration kinetics of tricalcium silicate cement

    Full text link
    We reconsider a number of measurements for the overall hydration kinetics of tricalcium silicate pastes having an initial water to cement weight ratio close to 0.5. We find that the time dependent ratio of hydrated and unhydrated silica mole numbers can be well characterized by two power-laws in time, x/(1−x)∼(t/tx)ψx/(1-x)\sim (t/t_x)^\psi. For early times t<txt < t_x we find an `accelerated' hydration (ψ=5/2\psi = 5/2) and for later times t>txt > t_x a `deaccelerated' behavior (ψ=1/2\psi = 1/2). The crossover time is estimated as tx≈16hourst_x \approx 16 hours. We interpret these results in terms of a global second order rate equation indicating that (a) hydrates catalyse the hydration process for t<txt<t_x, (b) they inhibit further hydration for t>txt > t_x and (c) the value of the associated second order rate constant is of magnitude 6x10^{-7} - 7x10^{-6} liter mol^{-1} s^{-1}. We argue, by considering the hydration process actually being furnished as a diffusion limited precipitation that the exponents ψ=5/2\psi = 5/2 and ψ=1/2\psi = 1/2 directly indicate a preferentially `plate' like hydrate microstructure. This is essentially in agreement with experimental observations of cellular hydrate microstructures for this class of materials.Comment: RevTeX macros, 6 pages, 4 postscript figure
    • …
    corecore