24 research outputs found

    Radiation-induced leukaemia in South Africa: response of lymphocytes and cd34+ cells to different radiation qualities.

    Get PDF
    Philosophiae Doctor - PhDEpidemiological studies have highlighted that leukaemia can be considered as the most prominent malignancy after radiation exposure during childhood. The lifetime risk on radiation-induced leukaemia for a given dose is 3 – 5 times higher for children compared to adults. The high risk at a young age is related to the elevated sensitivity of the red bone marrow where haematopoietic stem and progenitor cells (HSPCs) are located. HSPCs self-renewal capacity and long-life span increase their susceptibility to DNA damage accumulation, making them a major target of radiation-induced carcinogenesis. Proton beam therapy (PBT) is increasingly used to treat paediatric brain tumours due to its dose sparing properties compared to conventional X-ray based radiotherapy. However, concerns regarding the carcinogenic potential of secondary neutrons produced during PBT, especially in terms of their effect on HSPCs harboured in the cranial bone marrow of paediatric patients, remain. In this study, the radiobiological differences between 60Co γ-rays and p(66)/Be(40) neutron exposure was investigated to resolve the underlying mechanisms for the high radiosensitivity of HSPCs (CD34+ cells) isolated from umbilical cord blood (UCB). For both radiation qualities, an apparent dose-dependent increase in the frequency of radiation-induced MN was observed in CD34+ cells. Furthermore, increased cytogenetic damage was observed with the CBMN assay after neutron irradiation, which highlights its leukaemogenic potential. In addition, no difference was observed in the nuclear division index of the CD34+ cells post-irradiation between both radiation qualities. The number of DNA DSBs was assessed by microscopic scoring of γ-H2AX foci, 2 and 18 hours after radiation exposure. A significant higher number of DNA DSBs were observed 2 hours after neutron irradiation with 0.5 Gy, but decreased to similar levels for both radiation qualities after 18 hours. Different stages of apoptosis in CD34+ cells were studied at 18 and 42 hours numerous time points post-irradiation by flow cytometry using the Annexin/PI assay. In contrast to the γ-H2AX foci results, a significant difference in late apoptosis was observed at 18 hours and 42 hours between the two radiation qualities. The results point towards a fast error-prone DNA repair in HSPCs after neutron irradiation, which might contribute to genomic instability and leukemogenesis. In the second phase of the PhD project, the impact of age on radiosensitivity was investigated by comparing newborn T-lymphocytes with adult peripheral blood (APB) T-lymphocytes. The major difference between UCB and APB T-lymphocytes, is their immunophenotypic profile. Since it is known that different T-lymphocyte subsets have a difference in radiosensitivity, the fraction of CD4+, CD8+, naïve (CD45RA+) and memory (CD45RO+) T-lymphocytes was determined via flow cytometry in the two groups. The cytokinesis-block micronucleus (CBMN) assay was used to determine the extent to which age influences the frequency of cytogenic damage in response to 60Co γ-rays radiation. For both APB and UCB, an outspoken dose-dependent increase in the frequency of radiation-induced MN was observed at 0.5, 1, 3 and 4 Gy. However, no significant difference was observed at 4 Gy when comparing MN yields of APB and UCB. An increased radiosensitivity of newborn to adult donors of 34%, 42%, 29%, 26% and 16% was observed based on the MN scoring at doses of 0.5, 1, 2, 3 and 4 Gy, respectively. The lowest radiosensitivity was identified at the highest dose, which might explain the non-significant difference at 4 Gy. In addition, there was a clear trend that females were more sensitive to 60Co γ-rays radiation than males in both adults and newborns, even though the difference was not significant. The immunophenotypic study revealed that that both the CD4+ and CD8+ T-lymphocytes of newborns are mainly naïve. This is illustrated by the co-expression of CD45RA+ on 90.70% (range: 80.80% – 98.40%) and 95.90% (range: 89.60% – 98.80%) of CD4+ and CD8+ cells respectively. The composition of adult T-lymphocytes, in contrast, is clearly different with a more equal distribution between CD45RA+ and CD45RO+ subpopulations. This finding demonstrates that there are differences in the radiosensitivity between newborn and adult T-lymphocytes which might be linked to the immunophenotypic change of T-lymphocytes with age

    The impact of dose rate on dna double-strand break formation and repair in human lymphocytes exposed to fast neutron irradiation

    Get PDF
    first_pagesettingsOrder Article Reprints Open AccessArticle The Impact of Dose Rate on DNA Double-Strand Break Formation and Repair in Human Lymphocytes Exposed to Fast Neutron Irradiation by Shankari Nair 1,2,*,Monique Engelbrecht 2,3,Xanthene Miles 2,Roya Ndimba 2,Randall Fisher 2,Peter du Plessis 2ORCID,Julie Bolcaen 2ORCID,Jaime Nieto-Camero 2,Evan de Kock 2 andCharlot Vandevoorde 2,*ORCID 1 Department of Radiochemistry, South African Nuclear Energy Corporation, Pretoria 001, South Africa 2 Radiobiology, Radiation Biophysics Division, Department of Nuclear Medicine, iThemba LABS, Cape Town 7131, South Africa 3 Department of Medical Biosciences, University of the Western Cape, Cape Town 7535, South Africa * Authors to whom correspondence should be addressed. Int. J. Mol. Sci. 2019, 20(21), 5350; https://doi.org/10.3390/ijms20215350 Received: 16 September 2019 / Revised: 16 October 2019 / Accepted: 19 October 2019 / Published: 28 October 2019 (This article belongs to the Section Molecular Biology) Download Browse Figures Review Reports Versions Notes Abstract The lack of information on how biological systems respond to low-dose and low dose-rate exposures makes it difficult to accurately assess the carcinogenic risks. This is of critical importance to space radiation, which remains a serious concern for long-term manned space exploration. In this study, the γ-H2AX foci assay was used to follow DNA double-strand break (DSB) induction and repair following exposure to neutron irradiation, which is produced as secondary radiation in the space environment. Human lymphocytes were exposed to high dose-rate (HDR: 0.400 Gy/min) and low dose-rate (LDR: 0.015 Gy/min) p(66)/Be(40) neutrons. DNA DSB induction was investigated 30 min post exposure to neutron doses ranging from 0.125 to 2 Gy

    The interaction between 6 MV X-rays and p(66)/Be neutrons with spherical gold nanoparticles to induce cellular damage

    Get PDF
    Magister Scientiae (Medical Bioscience) - MSc(MBS)Despite the advances in therapies such as chemotherapy and radiotherapy, tumours have been shown to be resistant to the treatments. Gold nanoparticles (AuNPs) have been recognized as effective radiosensitizers of low energy (e.g. 200–500 kV) X-rays, leading to the emission of Auger electrons that cause highly localised ionizing damage to cells. Spherical AuNPs were synthesised via the reduction of the chloroaurate ions by sodium citrate. Characterisation of AuNPs involved UV-visible spectrophotometry, zeta (Z) potential, dynamic light scattering (DLS) and polydispersity index (PDI) measurements for determination of surface plasmon resonance (SPR), surface charge and stability, as well as transmission electron microscopy (TEM) for hydrodynamic core sizes, size distribution width and shape of AuNPs. Both the 5 and 10 nm AuNPs were found to be anionic with λmax absorbance of 525 nm and uniform size distribution. DLS measurement at 38.12 nm and 48.50 nm, respectively for 5 nm and 10 nm AuNPs, points to aggregation of the AuNPs. However, TEM measurements confirmed the core size of the 10 nm AuNPs. Non-malignant Chinese hamster ovary (CHO-K1), brain endothelial (BEnd5), breast (MCF-10A), isolated human lymphocytes and malignant breast (MCF-7) cell lines were treated with 50 μg/ml of AuNPs, and irradiated with either 1, 2 or 4 Gy X-rays or 1 or 2 Gy p(66)/Be neutron radiation. The γ-H2AX foci assay, cytokinesis-block micronucleus assay, MTT assay and fluorescence-activated cell sorting (FACS) was used to determine that amount of double stranded breaks (DSBs) in isolated lymphocytes, the presence and number of micronuclei (MNi) within binucleated cells (BNCs), cell viability and cell cycle progression, respectively. Preliminary experiments that established the reliability of the study regarding the induction of DNA damage after the bombardment of AuNPs by scattered low kV X-rays, were carried out on lymphocytes. Combined treatment (AuNPs and radiation) resulted in more endogenous foci in comparison to lymphocytes that were treated with AuNPs only. The CHO-K1 and MCF-7 cells showed higher MNi frequencies after the combination treatment of AuNPs and radiation compared to the number of MNi in samples exposed to AuNPs and radiation separately. The AuNPs alone influenced the cellular kinetics of all cell types. Interaction indices, which is the enhancement factor of AuNPs in combination with radiation, for AuNPs and 6 MV 2 Gy X-rays of 1.6 to 1.7 and 1.3 to 1.4 have respectively been determined for CHO-K1 and MCF-7 cells, whilst that for the other cell types used in the study were not different from Unity. As expected, the interaction indices between AuNPs and p(66)/Be neutrons was lower than the interaction indices after 2 Gy X-rays, as p(66)/Be neutrons interact only with the nuclei of the AuNP's atoms and the X-ray photons interact with the orbital electrons of the atoms of the AuNPs leading to Auger electron emission. The cell viability assay showed that 50 μg/ml of AuNPs had an inhibitory effect on cellular proliferation, in all four cell linnes whereas the lower concentrations (2.5, 5 and 10 μg/ml) had no effect. Results in this study, revealed an increase in the accumulation of CHO-K1 an MCF-7 cells in the G₂/M phase of the cell cycle after being treated with AuNPs followed by X-ray radiation, suggesting that the cells have possibly been sensitised to the damaging effects of radiation. Further studies are required to quantify internalised AuNPs and to then link the possible concentration differences of the AuNPs to differences in radiation damage effects observed for the different cell types

    Radiation-induced Leukaemia in South Africa: Response of lymphocytes and cd34+ cells to different radiation qualities

    Get PDF
    Philosophiae Doctor - PhDEpidemiological studies have highlighted that leukaemia can be considered as the most prominent malignancy after radiation exposure during childhood. The lifetime risk on radiation-induced leukaemia for a given dose is 3 – 5 times higher for children compared to adults. The high risk at a young age is related to the elevated sensitivity of the red bone marrow where haematopoietic stem and progenitor cells (HSPCs) are located. HSPCs self-renewal capacity and long-life span increase their susceptibility to DNA damage accumulation, making them a major target of radiation-induced carcinogenesis. Proton beam therapy (PBT) is increasingly used to treat paediatric brain tumours due to its dose sparing properties compared to conventional X-ray based radiotherapy

    Radiosensitization Effect of Gold Nanoparticles in Proton Therapy

    Get PDF
    The number of proton therapy facilities and the clinical usage of high energy proton beams for cancer treatment has substantially increased over the last decade. This is mainly due to the superior dose distribution of proton beams resulting in a reduction of side effects and a lower integral dose compared to conventional X-ray radiotherapy. More recently, the usage of metallic nanoparticles as radiosensitizers to enhance radiotherapy is receiving growing attention. While this strategy was originally intended for X-ray radiotherapy, there is currently a small number of experimental studies indicating promising results for proton therapy. However, most of these studies used low proton energies, which are less applicable to clinical practice; and very small gold nanoparticles (AuNPs). Therefore, this proof of principle study evaluates the radiosensitization effect of larger AuNPs in combination with a 200 MeV proton beam. CHO-K1 cells were exposed to a concentration of 10 μg/ml of 50 nm AuNPs for 4 hours before irradiation with a clinical proton beam at NRF iThemba LABS. AuNP internalization was confirmed by inductively coupled mass spectrometry and transmission electron microscopy, showing a random distribution of AuNPs throughout the cytoplasm of the cells and even some close localization to the nuclear membrane. The combined exposure to AuNPs and protons resulted in an increase in cell killing, which was 27.1% at 2 Gy and 43.8% at 6 Gy, compared to proton irradiation alone, illustrating the radiosensitizing potential of AuNPs. Additionally, cells were irradiated at different positions along the proton depth-dose curve to investigate the LET-dependence of AuNP radiosensitization. An increase in cytogenetic damage was observed at all depths for the combined treatment compared to protons alone, but no incremental increase with LET could be determined. In conclusion, this study confirms the potential of 50 nm AuNPs to increase the therapeutic efficacy of proton therapy

    Mean platelet volume and platelet volume distribution width in canine parvoviral enteritis

    Get PDF
    Bacterial translocation from the damaged intestinal tract, reported in canine parvoviral (CPV) enteritis, is thought to be responsible for the systemic inflammatory response resulting from coliform septicemia, which could ultimately progress to septic shock and death. Alterations in platelet indices, specifically mean platelet volume (MPV), is a consistent finding in critically ill people and dogs with and without sepsis. Increased MPV has been reported to be an indirect indicator of platelet activation and of bone marrow response in people and dogs with sepsis. The study aim was to compare admission MPV and platelet volume distribution width (PVDW) in dogs with CPV enteritis to that of healthy aged-matched control dogs. Forty-eight dogs with CPV enteritis and 18 healthy age matched control dogs were included. CPV infection was confirmed with electron microscopy and concurrent blood-borne infections were excluded using PCR. EDTA whole blood samples were analyzed on an automated cell counter, ADVIA 2120, within 30-60min from collection. There was no significant difference for platelet count between the groups. The MPV for CPV infected dogs (median: 14.0; IQR: 12.2–15.1) was significantly higher compared to controls (11.3; IQR: 10.3–13.1, P = 0.002). The PVDW for CPV infected dogs (66.9; IQR: 64.2–68.8) was significantly higher compared to controls (63.3; IQR: 60.2–65.1, P < 0.001). These findings suggest that significant platelet activation is present in dogs with CPV enteritis which may play a role in the disease outcome, similar to people with sepsis. Further studies are required to investigate the prognosticating ability of MPV in dogs with CPV enteritis.Health and Welfare Sector Education and Training Authorityhttps://www.frontiersin.org/journals/veterinary-science#am2022Companion Animal Clinical Studie

    Circulating markers of endothelial activation in canine parvoviral enteritis

    Get PDF
    The data that support the findings of this study are available from the corresponding author, B.K. Atkinson, upon reasonable request.BACKGROUND : Canine parvovirus (CPV) is a common cause of enteritis, immune suppression and systemic inflammation in young dogs. Endothelial markers, such as intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1), and molecules that upregulate their expression, such as high mobility group box 1 protein (HMGB-1), provide insight into the state of the endothelium during inflammation. OBJECTIVES : This study aimed to determine if circulating concentrations of ICAM-1, VCAM-1 and HMGB-1 were altered in CPV enteritis compared to healthy controls, and whether a correlation existed between these molecules and the degree of inflammation METHODS : Thirty dogs with naturally occurring CPV enteritis and ten control dogs were included. Physical examinations, complete blood count and C-reactive protein (CRP) measurements were performed on all dogs at presentation. The concentrations of ICAM-1, VCAM-1 and HMGB-1 were measured using commercially available canine-specific enzyme-linked immunosorbent assay (ELISA) kits. RESULTS : In dogs with CPV enteritis, ICAM-1 concentrations were significantly lower (median: 5.9 [IQR: 4.3-8.3]) and CRP higher (134 [IQR: 85-195]) compared to controls (8.0 [IQR: 6.9-10.3], p = 0.008; 1 [IQR: 0-7], p < 0.001). No significant difference was found for VCAM-1 and HMGB-1. A strong correlation was identified between VCAM-1 and segmented neutrophil count (r = 0.612, p < 0.001). CONCLUSION : Despite the presence of systemic inflammation in CPV enteritis, evidenced by high CRP concentrations, our results suggest circulating concentrations of ICAM-1, VCAM-1 and HMGB-1 failed to show an increase. Endothelial activation with subsequent leukocyte adhesion and transmigration through the endothelium may be affected in CPV enteritis and these findings require further investigation.http://www.jsava.co.zaam2023Companion Animal Clinical Studie

    A Validation Study on Immunophenotypic Differences in T-lymphocyte Chromosomal Radiosensitivity between Newborns and Adults in South Africa

    No full text
    Children have an increased risk of developing radiation-induced secondary malignancies compared to adults, due to their high radiosensitivity and longer life expectancy. In contrast to the epidemiological evidence, there is only a handful of radiobiology studies which investigate the difference in radiosensitivity between children and adults at a cellular level. In this study, the previous results on the potential age dependency in chromosomal radiosensitivity were validated again by means of the cytokinesis-block micronucleus (CBMN) assay in T-lymphocytes isolated from the umbilical cord and adult peripheral blood of a South African population. The isolated cells were irradiated with 60Co &gamma;-rays at doses ranging from 0.5 Gy to 4 Gy. Increased radiosensitivities of 34%, 42%, 29%, 26% and 16% were observed for newborns compared to adults at 0.5, 1, 2, 3 and 4 Gy, respectively. An immunophenotypic evaluation with flow cytometry revealed a significant change in the fraction of na&iuml;ve (CD45RA+) T-lymphocytes in CD4+ and CD8+ T-lymphocytes with age. Newborns co-expressed an average of 91.05% CD45RA+ (range: 80.80&ndash;98.40%) of their CD4+ cells, while this fraction decreased to an average of 39.08% (range: 12.70&ndash;58.90%) for adults. Similar observations were made for CD8+ cells. This agrees with previous published results that the observed differences in chromosomal radiosensitivity between newborn and adult T-lymphocytes could potentially be linked to their immunophenotypic profiles

    Synthesis and evaluation of benzoylbenzofurans and isoflavone derivatives as sirtuin 1 inhibitors with antiproliferative effects on cancer cells

    Get PDF
    Isoflavone derivatives were prepared from benzoylbenzofuran precursors. The synthesized compounds were analyzed by 1D and 2D nuclear magnetic resonance (NMR) spectroscopy, as well as high-resolution mass spectrometry (HRMS) to confirm their structures. The benzoylbenzofuran and isoflavone analogues were evaluated for inhibition of sirtuin 1 (SIRT1) and cell proliferation in MDA-MB-231 triple-negative breast cancer (TNBC) cells. Several isoflavone and benzoylbenzofuran derivatives exhibited potent antiproliferative effects against the MDA-MB-231 cancer cell line. Most of the isoflavone derivatives attenuated SIRT1 activity to below 50%. The most active compounds were the isoflavone quinones 38, 39, and 40, at IC50 values of 5.58 ± 0.373, 1.62 ± 0.0720, and 7.24 ± 0.823 μM, respectively. Importantly, the most active compound, 6-methoxy-4′,6′-dimethylisoflavone-2′,5′-quinone (39) displayed SIRT1 inhibitory activity comparable to that of the reference compound, suramin. The in silico docking simulations in the active site of SIRT1 further substantiated the experimental results and explored the binding orientations of potent compounds in the active site of the target.The National Research Foundation of South Africa; the University of Pretoria and the South African Nuclear Energy Corporation (Necsa SOC Ltd).https://www.elsevier.com/locate/bioorghj2023ChemistryPhysiolog
    corecore