15,041 research outputs found

    Probing the Melting of a Two-dimensional Quantum Wigner Crystal via its Screening Efficiency

    Full text link
    One of the most fundamental and yet elusive collective phases of an interacting electron system is the quantum Wigner crystal (WC), an ordered array of electrons expected to form when the electrons' Coulomb repulsion energy eclipses their kinetic (Fermi) energy. In low-disorder, two-dimensional (2D) electron systems, the quantum WC is known to be favored at very low temperatures (TT) and small Landau level filling factors (ν\nu), near the termination of the fractional quantum Hall states. This WC phase exhibits an insulating behavior, reflecting its pinning by the small but finite disorder potential. An experimental determination of a TT vs ν\nu phase diagram for the melting of the WC, however, has proved to be challenging. Here we use capacitance measurements to probe the 2D WC through its effective screening as a function of TT and ν\nu. We find that, as expected, the screening efficiency of the pinned WC is very poor at very low TT and improves at higher TT once the WC melts. Surprisingly, however, rather than monotonically changing with increasing TT, the screening efficiency shows a well-defined maximum at a TT which is close to the previously-reported melting temperature of the WC. Our experimental results suggest a new method to map out a TT vs ν\nu phase diagram of the magnetic-field-induced WC precisely.Comment: The formal version is published on Phys. Rev. Lett. 122, 116601 (2019

    Antenna servo control system characterization: Rate loop analysis for 34-m antenna at DSS 15

    Get PDF
    The elevation and azimuth servo rate loops at the 34-m High Efficiency Deep Space Station 15 (DSS 15) are described. Time and frequency response performance criteria were measured. The results are compared to theoretically deduced performance criteria. Unexpected anomalies in the frequency response are observed and identified

    A new result on the Klein-Gordon equation in the background of a rotating black hole

    Full text link
    This short paper should serve as basis for further analysis of a previously found new symmetry of the solutions of the wave equation in the gravitational field of a Kerr black hole. Its main new result is the proof of essential self-adjointness of the spatial part of a reduced normalized wave operator of the Kerr metric in a weighted L^2-space. As a consequence, it leads to a purely operator theoretic proof of the well-posedness of the initial value problem of the reduced Klein-Gordon equation in that field in that L^2-space and in this way generalizes a corresponding result of Kay (1985) in the case of the Schwarzschild black hole. It is believed that the employed methods are applicable to other separable wave equations

    Competition Between Fractional Quantum Hall Liquid, Bubble and Wigner Crystal Phases in the Third Landau Level

    Full text link
    Magnetotransport measurements were performed in a ultra-high mobility GaAs/AlGaAs quantum well of density ∼3.0×1011\sim 3.0 \times 10^{11} cm−2cm^{-2}. The temperature dependence of the magnetoresistance RxxR_{xx} was studied in detail in the vicinity of ν=9/2\nu={9/2}. In particular, we discovered new minima in RxxR_{xx} at filling factor ν≃41/5\nu\simeq 4{1/5} and 44/54{4/5}, but only at intermediate temperatures 80≲T≲12080\lesssim T\lesssim 120 mK. We interpret these as evidence for a fractional quantum Hall liquid forming in the N=2 Landau level and competing with bubble and Wigner crystal phases favored at lower temperatures. Our data suggest that a magnetically driven insulator-insulator quantum phase transition occurs between the bubble and Wigner crystal phases at T=0.Comment: Phys. Rev. Lett.93 266804 (2004

    Comment: Superconducting transition in Nb nanowires fabricated using focused ion beam

    Full text link
    In a recent paper Tettamanzi et al (2009 Nanotechnology \bf{20} 465302) describe the fabrication of superconducting Nb nanowires using a focused ion beam. They interpret their conductivity data in the framework of thermal and quantum phase slips below TcT_c. In the following we will argue that their analysis is inappropriate and incomplete, leading to contradictory results. Instead, we propose an interpretation of the data within a SN proximity model.Comment: 3 pages, 1 figure accepted in Nanotechnolog

    Spin Hall effect in a system of Dirac fermions in the honeycomb lattice with intrinsic and Rashba spin-orbit interaction

    Full text link
    We consider spin Hall effect in a system of massless Dirac fermions in a graphene lattice. Two types of spin-orbit interaction, pertinent to the graphene lattice, are taken into account - the intrinsic and Rashba terms. Assuming perfect crystal lattice, we calculate the topological contribution to spin Hall conductivity. When both interactions are present, their interplay is shown to lead to some peculiarities in the dependence of spin Hall conductivity on the Fermi level.Comment: 7 pages, 5 figure
    • …
    corecore