487 research outputs found

    From the cradle to the grave: activities of GATA-3 throughout T-cell development and differentiation

    Full text link
    GATA family transcription factors play multiple vital roles in hematopoiesis in many cell lineages, and in particular, T cells require GATA-3 for execution of several developmental steps. Transcriptional activation of the Gata3 gene is observed throughout T-cell development and differentiation in a stage-specific fashion. GATA-3 has been described as a master regulator of T-helper 2 (Th2) cell differentiation in mature CD4 + T cells. During T-cell development in the thymus, its roles in the CD4 versus CD8 lineage choice and at the β-selection checkpoint are the best characterized. In contrast, its importance prior to β-selection has been obscured both by the developmental heterogeneity of double negative (DN) 1 thymocytes and the paucity of early T-lineage progenitors (ETPs), a subpopulation of DN1 cells that contains the most immature thymic progenitors that retain potent T-lineage developmental potential. By examining multiple lines of in vivo evidence procured through the analysis of Gata3 mutant mice, we have recently demonstrated that GATA-3 is additionally required at the earliest stage of thymopoiesis for the development of the ETP population. Here, we review the characterized functions of GATA-3 at each stage of T-cell development and discuss hypothetical molecular pathways that mediate these functions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/79206/1/j.1600-065X.2010.00954.x.pd

    Motif Discovery in Tissue-Specific Regulatory Sequences Using Directed Information

    Get PDF
    Motif discovery for the identification of functional regulatory elements underlying gene expression is a challenging problem. Sequence inspection often leads to discovery of novel motifs (including transcription factor sites) with previously uncharacterized function in gene expression. Coupled with the complexity underlying tissue-specific gene expression, there are several motifs that are putatively responsible for expression in a certain cell type. This has important implications in understanding fundamental biological processes such as development and disease progression. In this work, we present an approach to the identification of motifs (not necessarily transcription factor sites) and examine its application to some questions in current bioinformatics research. These motifs are seen to discriminate tissue-specific gene promoter or regulatory regions from those that are not tissue-specific. There are two main contributions of this work. Firstly, we propose the use of directed information for such classification constrained motif discovery, and then use the selected features with a support vector machine (SVM) classifier to find the tissue specificity of any sequence of interest. Such analysis yields several novel interesting motifs that merit further experimental characterization. Furthermore, this approach leads to a principled framework for the prospective examination of any chosen motif to be discriminatory motif for a group of coexpressed/coregulated genes, thereby integrating sequence and expression perspectives. We hypothesize that the discovery of these motifs would enable the large-scale investigation for the tissue-specific regulatory role of any conserved sequence element identified from genome-wide studies

    GATA2 functions in adrenal chromaffin cells

    Full text link
    Catecholamine synthesized in the sympathoadrenal system, including sympathetic neurons and adrenal chromaffin cells, is vital for cardiovascular homeostasis. It has been reported that GATA2, a zinc finger transcription factor, is expressed in murine sympathoadrenal progenitor cells. However, a physiological role for GATA2 in adrenal chromaffin cells has not been established. In this study, we demonstrate that GATA2 is specifically expressed in adrenal chromaffin cells. We examined the consequences of Gata2 loss- of- function mutations, exploiting a Gata2 conditional knockout allele crossed to neural crest- specific Wnt1- Cre transgenic mice (Gata2 NC- CKO). The vast majority of Gata2 NC- CKO embryos died by embryonic day 14.5 (e14.5) and exhibited a decrease in catecholamine- producing adrenal chromaffin cells, implying that a potential catecholamine defect might lead to the observed embryonic lethality. When intercrossed pregnant dams were fed with synthetic adrenaline analogs, the lethality of the Gata2 NC- CKO embryos was partially rescued, indicating that placental transfer of the adrenaline analogs complements the lethal catecholamine deficiency in the Gata2 NC- CKO embryos. These results demonstrate that GATA2 participates in the development of neuroendocrine adrenaline biosynthesis, which is essential for fetal survival.GATA2 is specifically expressed in adrenal chromaffin cells in which GATA2 plays a role for catecholamine biosynthesis.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/162786/2/gtc12795_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162786/1/gtc12795.pd

    A genetic test for interchromosomal interaction (transvection) in a beta-globin knock-in mouse

    Get PDF
    Long-range associations between enhancers and their target gene promoters have been shown to play critical roles in executing genome function. Recent variations of chromosome capture technology have revealed a comprehensive view of intra- and interchromosomal contacts between specific genomic sites. The locus control region of the β-globin genes (β-LCR) is a super-enhancer that is capable of activating all of the β-like globin genes within the locus in cis through physical interaction by forming DNA loops. CTCF helps to mediate loop formation between LCR-HS5 and 3’HS1 in the human β-globin locus, in this way thought to contribute to the formation of a “chromatin hub”. The β-globin locus is also in close physical proximity to other erythrocyte-specific genes located long distances away on the same chromosome. In this case, erythrocyte-specific genes gather together at a shared “transcription factory” for co-transcription. Theoretically, enhancers could also activate target gene promoters at the identical loci, yet on different chromosomes in trans, a phenomenon originally described as transvection in Drosophilla. Although close physical proximity has been reported for the β-LCR and the β-like globin genes when integrated at the mouse homologous loci in trans, their structural and functional interactions were found to be rare, possibly because of a lack of suitable regulatory elements that might facilitate such trans interactions. Therefore, we re-evaluated presumptive transvection-like enhancer-promoter communication by introducing CTCF binding sites and erythrocyte-specific transcription units into both LCR-enhancer and β-promoter alleles, each inserted into the mouse ROSA26 locus on separate chromosomes. Following cross-mating of mice to place the two mutant loci at the identical chromosomal position and into active chromation in trans, their transcriptional output was evaluated. The results demonstrate that there was no significant functional association between the LCR and the β-globin gene in trans even in this idealized experimental context

    Spiral ganglion cell degeneration‐induced deafness as a consequence of reduced GATA factor activity

    Full text link
    Zinc‐finger transcription factors GATA2 and GATA3 are both expressed in the developing inner ear, although their overlapping versus distinct activities in adult definitive inner ear are not well understood. We show here that GATA2 and GATA3 are co‐expressed in cochlear spiral ganglion cells and redundantly function in the maintenance of spiral ganglion cells and auditory neural circuitry. Notably, Gata2 and Gata3 compound heterozygous mutant mice had a diminished number of spiral ganglion cells due to enhanced apoptosis, which resulted in progressive hearing loss. The decrease in spiral ganglion cellularity was associated with lowered expression of neurotrophin receptor TrkC that is an essential factor for spiral ganglion cell survival. We further show that Gata2 null mutants that additionally bear a Gata2 YAC (yeast artificial chromosome) that counteracts the lethal hematopoietic deficiency due to complete Gata2 loss nonetheless failed to complement the deficiency in neonatal spiral ganglion neurons. Furthermore, cochlea‐specific Gata2 deletion mice also had fewer spiral ganglion cells and resultant hearing impairment. These results show that GATA2 and GATA3 redundantly function to maintain spiral ganglion cells and hearing. We propose possible mechanisms underlying hearing loss in human GATA2‐ or GATA3‐related genetic disorders.Our results demonstrate that GATA2 and GATA3 redundantly function to maintain inner ear spiral ganglion cells and hearing. We propose possible mechanisms underlying hearing loss in human GATA2‐ or GATA3‐related genetic disorders.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151287/1/gtc12705.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151287/2/gtc12705_am.pd
    corecore