13,077 research outputs found

    Shape transformations in rotating ferrofluid drops

    Full text link
    Floating drops of magnetic fluid can be brought into rotation by applying a rotating magnetic field. We report theoretical and experimental results on the transition from a spheroid equilibrium shape to non-axissymmetrical three-axes ellipsoids at certain values of the external field strength. The transitions are continuous for small values of the magnetic susceptibility and show hysteresis for larger ones. In the non-axissymmetric shape the rotational motion of the drop consists of a vortical flow inside the drop combined with a slow rotation of the shape. Nonlinear magnetization laws are crucial to obtain quantitative agreement between theory and experiment.Comment: 4 pages, 3 figure

    Equilibrium spin currents: Non-Abelian gauge invariance and color diamagnetism in condensed matter

    Full text link
    The spin-orbit (SO) interaction in condensed matter can be described in terms of a non-Abelian potential known in high-energy physics as a color field. I show that a magnetic component of this color field inevitably generates diamagnetic color currents which are just the equilibrium spin currents discussed in a condensed matter context. These dissipationless spin currents thus represent a universal property of systems with SO interaction. In semiconductors with linear SO coupling the spin currents are related to the effective non-Abelian field via Yang-Mills magnetostatics equation.Comment: RevTeX, 4 page

    Fingering Instability in a Water-Sand Mixture

    Full text link
    The temporal evolution of a water-sand interface driven by gravity is experimentally investigated. By means of a Fourier analysis of the evolving interface the growth rates are determined for the different modes appearing in the developing front. To model the observed behavior we apply the idea of the Rayleigh-Taylor instability for two stratified fluids. Carrying out a linear stability analysis we calculate the growth rates from the corresponding dispersion relations for finite and infinite cell sizes. Based on the theoretical results the viscosity of the suspension is estimated to be approximately 100 times higher than that of pure water, in agreement with other experimental findings.Comment: 11 pages, 12 figures, RevTeX; final versio

    Spin generation away from boundaries by nonlinear transport

    Full text link
    In several situations of interest, spin polarization may be generated far from the boundaries of a sample by nonlinear effects of an electric current, even when such a generation is forbidden by symmetry in the linear regime. We present an analytically solvable model where spin accumulation results from a combination of current gradients, nonlinearity, and cubic anisotropy. Further, we show that even with isotropic conductivity, nonlinear effects in a low symmetry geometry can generate spin polarization far away from boundaries. Finally, we find that drift from the boundaries results in spin polarization patterns that dominate in recent experiments on GaAs by Sih et al. [Phys. Rev. Lett. 97, 096605 (2006)]

    Spin Hall effect in a system of Dirac fermions in the honeycomb lattice with intrinsic and Rashba spin-orbit interaction

    Full text link
    We consider spin Hall effect in a system of massless Dirac fermions in a graphene lattice. Two types of spin-orbit interaction, pertinent to the graphene lattice, are taken into account - the intrinsic and Rashba terms. Assuming perfect crystal lattice, we calculate the topological contribution to spin Hall conductivity. When both interactions are present, their interplay is shown to lead to some peculiarities in the dependence of spin Hall conductivity on the Fermi level.Comment: 7 pages, 5 figure

    Edge spin accumulation: spin Hall effect without bulk spin current

    Full text link
    Spin accumulation in a 2D electron gas with Rashba spin-orbit interaction subject to an electric field can take place without bulk spin currents (edge spin Hall effect). This is demonstrated for the collisional regime using the non-equilibrium distribution function determined from the standard Boltzmann equation. Spin accumulation originates from interference of incident and reflected electron waves at the sample boundary.Comment: 4 pages, 3 figure

    Magnification of spin Hall effect in bilayer electron gas

    Full text link
    Spin transport properties of a coupled bilayer electron gas with Rashba spin-orbit coupling are studied. The definition of the spin currents in each layer as well as the corresponding continuity-like equations in the bilayer system are given. The curves of the spin Hall conductivities obtained in each layer exhibit sharp cusps around a particular value of the tunnelling strength and the conductivities undergo sign changes across this point. Our investigation on the impurity effect manifests that an arbitrarily small concentration of nonmagnetic impurities does not suppress the spin Hall conductivity to zero in the bilayer system. Based on these features, an experimental scheme is suggested to detect a magnification of the spin Hall effect.Comment: Revtex 10 pages, 4 figures; largely extended versio

    Theory of Spin Hall conductivity in n-doped GaAs

    Full text link
    We develop a theory of extrinsic spin currents in semiconductors, resulting from spin-orbit coupling at charged scatterers, which leads to skew scattering and side jump contributions to the spin Hall conductance. Applying the theory to bulk n-GaAs, without any free parameters, we find spin currents that are in reasonable agreement with recent experiments by Kato et al. [Science 306, 1910 (2004)].Comment: 5 pages, 1 figur

    Localization problem of the quasiperiodic system with the spin orbit interaction

    Full text link
    We study one dimensional quasiperiodic system obtained from the tight-binding model on the square lattice in a uniform magnetic field with the spin orbit interaction. The phase diagram with respect to the Harper coupling and the Rashba coupling are proposed from a number of numerical studies including a multifractal analysis. There are four phases, I, II, III, and IV in this order from weak to strong Harper coupling. In the weak coupling phase I all the wave functions are extended, in the intermediate coupling phases II and III mobility edges exist, and accordingly both localized and extended wave functions exist, and in the strong Harper coupling phase IV all the wave functions are localized. Phase I and Phase IV are related by the duality, and phases II and III are related by the duality, as well. A localized wave function is related to an extended wave function by the duality, and vice versa. The boundary between phases II and III is the self-dual line on which all the wave functions are critical. In the present model the duality does not lead to pure spectra in contrast to the case of Harper equation.Comment: 10 pages, 11 figure

    Scattering Theory of Current-Induced Spin Polarization

    Full text link
    We construct a novel scattering theory to investigate magnetoelectrically induced spin polarizations. Local spin polarizations generated by electric currents passing through a spin-orbit coupled mesoscopic system are measured by an external probe. The electrochemical and spin-dependent chemical potentials on the probe are controllable and tuned to values ensuring that neither charge nor spin current flow between the system and the probe, on time-average. For the relevant case of a single-channel probe, we find that the resulting potentials are exactly independent of the transparency of the contact between the probe and the system. Assuming that spin relaxation processes are absent in the probe, we therefore identify the local spin-dependent potentials in the sample at the probe position, and hence the local current-induced spin polarization, with the spin-dependent potentials in the probe itself. The statistics of these local chemical potentials is calculated within random matrix theory. While they vanish on spatial and mesoscopic average, they exhibit large fluctuations, and we show that single systems typically have spin polarizations exceeding all known current-induced spin polarizations by a parametrically large factor. Our theory allows to calculate quantum correlations between spin polarizations inside the sample and spin currents flowing out of it. We show that these large polarizations correlate only weakly with spin currents in external leads, and that only a fraction of them can be converted into a spin current in the linear regime of transport, which is consistent with the mesoscopic universality of spin conductance fluctuations. We numerically confirm the theory.Comment: Final version; a tunnel barrier between the probe and the dot is considered. To appear in 'Nanotechnology' in the special issue on "Quantum Science and Technology at the Nanoscale
    • …
    corecore