19 research outputs found

    Enhanced Radiation Tolerance in Sputtered Cu/V Multilayers

    Get PDF
    High energy particle (neutron, proton and He ions) irradiation to materials typically leads to deteriorating properties, including void swelling, blistering, embrittlement, fracture and exfoliation of surfaces. This dissertation examines size dependent radiation damage in nanostructured metallic multilayers synthesized by the magnetron sputtering technique at room temperature. It reveals the roles of interface in achieving enhanced radiation tolerance in metallic materials. The microstructure and mechanical properties of as-deposited Cu/V multilayer films are systemically investigated, providing the basis for studying radiation damage mechanisms. Sputter-deposited Cu/V multilayers are subjected to helium (He) ion irradiation at room temperature with a peak dose of 6 displacements per atom (dpa). The average helium bubble density and lattice expansion induced by radiation decrease significantly with decreasing h, where h is individual layer thickness. The magnitude of radiation hardening decreases with decreasing h, and becomes negligible when h is 2.5 nm or less. The interactions between interfaces and radiation induced point defects and the evolution of microstructurs and mechanical behavior are discussed. This study indicates that nearly immiscible Cu/V interfaces spaced a few nm apart can effectively reduce the concentration of radiation induced point defects. Dose dependent radiation damage at room temperature in these Cu/V multilayers is systematically investigated with a peak dose in the range of 1-12 dpa. Peak bubble density increases with increasing dose, but it is much lower in Cu/V 2.5 nm multilayers than that in Cu/V 50 nm specimens. A similar radiation hardening trend is observed in multilayers irradiated at different fluences. Radiation hardening increases with dose and seems to reach saturation at a peak dose of 6 dpa. Negligible hardening for fine ( h less than/equal to 2.5 nm) multilayers is observed at all dose levels. Thermal stability of Cu/V multilayers is revealed by in situ annealing inside a transmission electron microscope. During isothermal annealing at 600 degrees C grain boundary grooving occurs across layer interfaces in Cu/V 50 nm specimens, whereas Cu/V 5 nm multilayers appear rather stable. Annealing of Cu/V multilayers at 400 degrees C leads to hardening of multilayers, whereas softening occurs in Cu/V multilayers annealed at 600 degrees C. The evolution of mechanical properties during annealing is correlated to the degradation of the layer interface and the consequent reduction of interface resistance to the transmission of single dislocation

    Effects of Helium Implantation on the Tensile Properties and Microstructure of Ni₇₃P₂₇ Metallic Glass Nanostructures

    Get PDF
    We report fabrication and nanomechanical tension experiments on as-fabricated and helium-implanted 130 nm diameter Ni₇₃P₂₇ metallic glass nanocylinders. The nanocylinders were fabricated by a templated electroplating process and implanted with He+ at energies of 50, 100, 150, and 200 keV to create a uniform helium concentration of 3 atom % throughout the nanocylinders. Transmission electron microscopy imaging and through-focus analysis reveal that the specimens contained 2 nm helium bubbles distributed uniformly throughout the nanocylinder volume. In situ tensile experiments indicate that helium-implanted specimens exhibit enhanced ductility as evidenced by a 2-fold increase in plastic strain over as-fabricated specimens with no sacrifice in yield and ultimate tensile strengths. This improvement in mechanical properties suggests that metallic glasses may actually exhibit a favorable response to high levels of helium implantation

    Sink property of metallic glass free surfaces

    Get PDF
    When heated to a temperature close to glass transition temperature, metallic glasses (MGs) begin to crystallize. Under deformation or particle irradiation, crystallization occurs at even lower temperatures. Hence, phase instability represents an application limit for MGs. Here, we report that MG membranes of a few nanometers thickness exhibit properties different from their bulk MG counterparts. The study uses in situ transmission electron microscopy with concurrent heavy ion irradiation and annealing to observe crystallization behaviors of MGs. For relatively thick membranes, ion irradiations introduce excessive free volumes and thus induce nanocrystal formation at a temperature linearly decreasing with increasing ion fluences. For ultra-thin membranes, however, the critical temperature to initiate crystallization is about 100 K higher than the bulk glass transition temperature. Molecular dynamics simulations indicate that this effect is due to the sink property of the surfaces which can effectively remove excessive free volumes. These findings suggest that nanostructured MGs having a higher surface to volume ratio are expected to have higher crystallization resistance, which could pave new paths for materials applications in harsh environments requiring higher stabilities.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000351178500001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=8e1609b174ce4e31116a60747a720701Multidisciplinary SciencesSCI(E)[email protected]; [email protected]

    Study of epitaxial thin films of YBa2Cu3O7-[delta] on silicon with different buffer layers

    No full text
    abstractpublished_or_final_versionPhysicsMasterMaster of Philosoph

    Fabrication of Cu2ZnSnS4 (CZTS) Nanoparticle Inks for Growth of CZTS Films for Solar Cells

    No full text
    Cu2ZnSnS4 (CZTS) is a promising candidate material for photovoltaic applications; hence, ecofriendly methods are required to fabricate CZTS films. In this work, we fabricated CZTS nanocrystal inks by a wet ball milling method, with the use of only nontoxic solvents, followed by filtration. We performed centrifugation to screen the as-milled CZTS and obtain nanocrystals. The distribution of CZTS nanoparticles during centrifugation was examined and nanocrystal inks were obtained after the final centrifugal treatment. The as-fabricated CZTS nanocrystal inks were used to deposit CZTS precursors with precisely controlled CZTS films by a spin-coating method followed by a rapid high pressure sulfur annealing method. Both the grain growth and crystallinity of the CZTS films were promoted and the composition was adjusted from S poor to S-rich by the annealing. XRD and Raman characterization showed no secondary phases in the annealed film, the absence of the detrimental phases. A solar cell efficiency of 6.2% (open circuit voltage: Voc = 633.3 mV, short circuit current: Jsc = 17.6 mA/cm2, and fill factor: FF = 55.8%) with an area of 0.2 cm2 was achieved based on the annealed CZTS film as the absorber layer

    Irradiation damage of single crystal, coarse-grained, and nanograined copper under helium bombardment at 450 °C

    No full text
    The irradiation damage behaviors of single crystal (SC), coarse-grained (CG), and nanograined (NG) copper (Cu) films were investigated under Helium (He) ion implantation at 450 °C with different ion fluences. In irradiated SC films, plenty of cavities are nucleated, and some of them preferentially formed on growth defects or dislocation lines. In the irradiated CG Cu, cavities formed both in grain interior and along grain boundaries; obvious void-denuded zones can be identified near grain boundaries. In contrast, irradiation-induced cavities in NG Cu were observed mainly gathering along grain boundaries with much less cavities in the grain interiors. The grains in irradiated NG Cu are significantly coarsened. The number density and average radius of cavities in NG Cu was smaller than that in irradiated SC Cu and CG Cu. These experiments indicate that grain boundaries are efficient sinks for irradiation-induced vacancies and highlight the important role of reducing grain size in suppressing radiation-induced void swelling.United States. Dept. of Energy. Office of Basic Energy Sciences (Center for Materials in Irradiation and Mechanical Extremes. Award 2008LANL 1026

    Effect of Ball Milling Parameters on the Refinement of Tungsten Powder

    No full text
    The high-energy ball milling method was adopted to explore the influence of ball milling parameters, such as milling speed and additive amounts of process control agent (PCA) on tungsten powder. The morphology and microstructure of tungsten powder in the process of refinement were characterized by field-emission scanning electron microscope (FE-SEM), field-emission transmission electron microscope (FE-TEM), and X-ray diffractometer (XRD). Results revealed that the ball milling process and the refinement of tungsten particle and grain can be largely influenced by these two parameters. The milling efficiency was found to be highest with the milling speed of 700 rpm and additive amounts of 8% PCA. The mechanisms for the effect of these two parameters and milling time on the refinement process were discussed. Nanocrystalline tungsten powder with a particle size and grain size smaller than 100 nm was obtained, and the grain size of 5–15 nm was fabricated successfully under the highest milling efficiency conditions

    Effects of helium implantation on tensile properties and microstructure of amorphous nickel phosphorous metallic glasses

    No full text
    Nuclear reactions generate insol. helium, which forms nano-sized bubbles that can lead to swelling and embrittlement of irradiated materials. Innovative structural materials must be created and utilized to enable new-generation nuclear reactors to withstand harsh thermomech. environments and to suppress helium-induced embrittlement. One family of candidate structural materials is metallic glasses, which offer high elastic limit and strength, corrosion resistance, and potential for improved ductility upon irradn. A significant detriment in their use for structural applications is catastrophic failure under tensile loadsWe use templated electron-beam lithog. and electro-deposition to fabricate 100 nm-diam. amorphous Ni-P metallic glass cylindrical nano-tensile specimens. Earlier studies in our group demonstrated the emergence of brittle-to-ductile transition in nano-sized metallic glasses upon tension, with useful ductility in excess of 20% in some cases. In this work we explore the effects of Helium implantation into already-ductile nano-sized metallic glasses. Helium was implanted uniformly into each sample at a concn. of 3 at% at 25°C and at 280°C to result in the bubble sizes between 2-3nm and ∼10nm. In-situ uniaxial tension expts. revealed that He-ion implantation increased available plastic strain in the nano-metallic glass tensile specimens by a factor of 2 and maintained the high strength of ∼2.1 GPa. We discuss these promising results in the framework of microstructural and defect response to ion irradn. in metallic glasses

    Design and Preparation of Nanoporous Cu/Ag Multilayer Films

    No full text
    Cu30Al70 and Ag30Al70 multilayer precursor films were prepared by magnetron sputtering, respectively. Then the nanoporous Cu/Ag multilayer composite films were successfully prepared by selecting the appropriate H2SO4 solution as the dealloying solution. It was found that the nanoporous structure was stable in the dealloying solution. The morphology and structure of nanoporous multilayer films are mainly related to the phase composition of precursors. The structure of nanoporous multilayers can be simply regarded as the superposition of single-layer structures. Our work shows that nanoporous multilayers can be well-prepared by magnetron sputtering combined with dealloying

    Detwinning through migration of twin boundaries in nanotwinned Cu films under in situ ion irradiation

    No full text
    The mechanism of radiation-induced detwinning is different from that of deformation detwinning as the former is dominated by supersaturated radiation-induced defects while the latter is usually triggered by global stress. In situ Kr ion irradiation was performed to study the detwinning mechanism of nanotwinned Cu films with various twin thicknesses. Two types of incoherent twin boundaries (ITBs), so-called fixed ITBs and free ITBs, are characterized based on their structural features, and the difference in their migration behavior is investigated. It is observed that detwinning during radiation is attributed to the frequent migration of free ITBs, while the migration of fixed ITBs is absent. Statistics shows that the migration distance of free ITBs is thickness and dose dependent. Potential migration mechanisms are discussed
    corecore