4,142 research outputs found

    Study of Magnetic Properties of A_2B^'NbO_6 (A=Ba,Sr, (BaSr): and B^'=Fe and Mn) double perovskites

    Full text link
    We have studied the magnetic properties of Ba_2FeNbO_6 and Ba_2MnNbO_6. it is seen that Ba_2FeNbO_6 is an antiferromagnet with a weak ferromagnetic behaviour at 5K while Ba_2MnNbO_6 shows two magnetic transitions one at 45 K and the other at 12K. Electron spin resonance (ESR) measurements at room temperature show that the Mn compound does not show any Jahn-Teller distortion. It is also seen that the Neel temperature of the A_2FeNbO_6 (A=Ba,Sr, BaSr) compounds do not vary significantly. However variations in the average A-site ionic radius influence the formation of short range correlations that persist above T_N.Comment: 10 oages, 5 figures, MMM, to appear in J.Appl.Phy

    Double quantum dot with tunable coupling in an enhancement-mode silicon metal-oxide semiconductor device with lateral geometry

    Full text link
    We present transport measurements of a tunable silicon metal-oxide-semiconductor double quantum dot device with lateral geometry. Experimentally extracted gate-to-dot capacitances show that the device is largely symmetric under the gate voltages applied. Intriguingly, these gate voltages themselves are not symmetric. Comparison with numerical simulations indicates that the applied gate voltages serve to offset an intrinsic asymmetry in the physical device. We also show a transition from a large single dot to two well isolated coupled dots, where the central gate of the device is used to controllably tune the interdot coupling.Comment: 4 pages, 3 figures, to be published in Applied Physics Letter

    Valley degeneracy in biaxially strained aluminum arsenide quantum wells

    Full text link
    This paper details a complete formalism for calculating electron subband energy and degeneracy in strained multi-valley quantum wells grown along any orientation with explicit results for the AlAs quantum well case. A standardized rotation matrix is defined to transform from the conventional- cubic-cell basis to the quantum-well-transport basis whereby effective mass tensors, valley vectors, strain matrices, anisotropic strain ratios, and scattering vectors are all defined in their respective bases. The specific cases of (001)-, (110)-, and (111)-oriented aluminum arsenide (AlAs) quantum wells are examined, as is the unconventional (411) facet, which is of particular importance in AlAs literature. Calculations of electron confinement and strain in the (001), (110), and (411) facets determine the critical well width for crossover from double- to single-valley degeneracy in each system. The notation is generalized to include miscut angles, and can be adapted to other multi-valley systems. To help classify anisotropic inter-valley scattering events, a new primitive unit cell is defined in momentum space which allows one to distinguish purely in-plane inter-valley scattering events from those that requires an out-of-plane momentum scattering component.Comment: 17 pages, 4 figures, 2 table

    Enhancement mode double top gated MOS nanostructures with tunable lateral geometry

    Full text link
    We present measurements of silicon (Si) metal-oxide-semiconductor (MOS) nanostructures that are fabricated using a process that facilitates essentially arbitrary gate geometries. Stable Coulomb blockade behavior free from the effects of parasitic dot formation is exhibited in several MOS quantum dots with an open lateral quantum dot geometry. Decreases in mobility and increases in charge defect densities (i.e. interface traps and fixed oxide charge) are measured for critical process steps, and we correlate low disorder behavior with a quantitative defect density. This work provides quantitative guidance that has not been previously established about defect densities for which Si quantum dots do not exhibit parasitic dot formation. These devices make use of a double-layer gate stack in which many regions, including the critical gate oxide, were fabricated in a fully-qualified CMOS facility.Comment: 11 pages, 6 figures, 3 tables, accepted for publication in Phys. Rev.

    Modeling of mode-locking in a laser with spatially separate gain media

    Get PDF
    We present a novel laser mode-locking scheme and discuss its unusual properties and feasibility using a theoretical model. A large set of single-frequency continuous-wave lasers oscillate by amplification in spatially separated gain media. They are mutually phase-locked by nonlinear feedback from a common saturable absorber. As a result, ultra short pulses are generated. The new scheme offers three significant benefits: the light that is amplified in each medium is continuous wave, thereby avoiding issues related to group velocity dispersion and nonlinear effects that can perturb the pulse shape. The set of frequencies on which the laser oscillates, and therefore the pulse repetition rate, is controlled by the geometry of resonator-internal optical elements, not by the cavity length. Finally, the bandwidth of the laser can be controlled by switching gain modules on and off. This scheme offers a route to mode-locked lasers with high average output power, repetition rates that can be scaled into the THz range, and a bandwidth that can be dynamically controlled. The approach is particularly suited for implementation using semiconductor diode laser arrays.Comment: 13 pages, 5 figures, submitted to Optics Expres

    Nuclear Inelastic X-Ray Scattering of FeO to 48 GPa

    Full text link
    The partial density of vibrational states has been measured for Fe in compressed FeO (w\"ustite) using nuclear resonant inelastic x-ray scattering. Substantial changes have been observed in the overall shape of the density of states close to the magnetic transiton around 20 GPa from the paramagnetic (low pressure) to the antiferromagnetic (high pressure) state. Our data indicate a substantial softening of the aggregate sound velocities far below the transition, starting between 5 and 10 GPa. This is consistent with recent radial x-ray diffraction measurements of the elastic constants in FeO. The results indicate that strong magnetoelastic coupling in FeO is the driving force behind the changes in the phonon spectrum of FeO.Comment: 4 pages, 4 figure
    • …
    corecore