21 research outputs found

    Multi-scale Entropy Evaluates the Proarrhythmic Condition of Persistent Atrial Fibrillation Patients Predicting Early Failure of Electrical Cardioversion

    Full text link
    [EN] Atrial fibrillation (AF) is nowadays the most common cardiac arrhythmia, being associated with an increase in cardiovascular mortality and morbidity. When AF lasts for more than seven days, it is classified as persistent AF and external interventions are required for its termination. A well-established alternative for that purpose is electrical cardioversion (ECV). While ECV is able to initially restore sinus rhythm (SR) in more than 90% of patients, rates of AF recurrence as high as 20-30% have been found after only a few weeks of follow-up. Hence, new methods for evaluating the proarrhythmic condition of a patient before the intervention can serve as efficient predictors about the high risk of early failure of ECV, thus facilitating optimal management of AF patients. Among the wide variety of predictors that have been proposed to date, those based on estimating organization of the fibrillatory (f-) waves from the surface electrocardiogram (ECG) have reported very promising results. However, the existing methods are based on traditional entropy measures, which only assess a single time scale and often are unable to fully characterize the dynamics generated by highly complex systems, such as the heart during AF. The present work then explores whether a multi-scale entropy (MSE) analysis of thef-waves may provide early prediction of AF recurrence after ECV. In addition to the common MSE, two improved versions have also been analyzed, composite MSE (CMSE) and refined MSE (RMSE). When analyzing 70 patients under ECV, of which 31 maintained SR and 39 relapsed to AF after a four week follow-up, the three methods provided similar performance. However, RMSE reported a slightly better discriminant ability of 86%, thus improving the other multi-scale-based outcomes by 3-9% and other previously proposed predictors of ECV by 15-30%. This outcome suggests that investigation of dynamics at large time scales yields novel insights about the underlying complex processes generatingf-waves, which could provide individual proarrhythmic condition estimation, thus improving preoperative predictions of ECV early failure.This research has been supported by grants DPI2007-83952-C3 from MINECO/AEI/FEDER EU, SBPLY/17/180501000411 from Junta de Comunidades de Castilla la Mancha and AICO/2019/036 from Generalitat Valenciana.Cirugeda Roldan, EM.; Calero, S.; Hidalgo, VM.; Enero, J.; Rieta, JJ.; Alcaraz, R. (2020). Multi-scale Entropy Evaluates the Proarrhythmic Condition of Persistent Atrial Fibrillation Patients Predicting Early Failure of Electrical Cardioversion. Entropy. 22(7):1-17. https://doi.org/10.3390/e22070748S117227Lippi, G., Sanchis-Gomar, F., & Cervellin, G. (2020). Global epidemiology of atrial fibrillation: An increasing epidemic and public health challenge. International Journal of Stroke, 16(2), 217-221. doi:10.1177/1747493019897870Lane, D. A., Skjøth, F., Lip, G. Y. H., Larsen, T. B., & Kotecha, D. (2017). Temporal Trends in Incidence, Prevalence, and Mortality of Atrial Fibrillation in Primary Care. Journal of the American Heart Association, 6(5). doi:10.1161/jaha.116.005155Duarte, R. C. F., Rios, D. R. A., Figueiredo, E. L., Caiaffa, J. R. S., Silveira, F. R., Lanna, R., … das Graças Carvalho, M. (2020). Thrombin Generation and other hemostatic parameters in patients with atrial fibrillation in use of warfarin or rivaroxaban. Journal of Thrombosis and Thrombolysis, 51(1), 47-57. doi:10.1007/s11239-020-02126-3Khoo, C. W., Krishnamoorthy, S., Lim, H. S., & Lip, G. Y. H. (2012). Atrial fibrillation, arrhythmia burden and thrombogenesis. International Journal of Cardiology, 157(3), 318-323. doi:10.1016/j.ijcard.2011.06.088Zoni-Berisso, M., Lercari, F., Carazza, T., & Domenicucci, S. (2014). Epidemiology of atrial fibrillation: European perspective. Clinical Epidemiology, 213. doi:10.2147/clep.s47385Dietzel, J., Haeusler, K. G., & Endres, M. (2017). Does atrial fibrillation cause cognitive decline and dementia? EP Europace, 20(3), 408-419. doi:10.1093/europace/eux031Aliot, E., Botto, G. L., Crijns, H. J., & Kirchhof, P. (2014). Quality of life in patients with atrial fibrillation: how to assess it and how to improve it. Europace, 16(6), 787-796. doi:10.1093/europace/eut369Miyazawa, K., & Lip, G. Y. (2018). Atrial fibrillation. Medicine, 46(10), 627-631. doi:10.1016/j.mpmed.2018.07.009Blum, S., Meyre, P., Aeschbacher, S., Berger, S., Auberson, C., Briel, M., … Conen, D. (2019). Incidence and predictors of atrial fibrillation progression: A systematic review and meta-analysis. Heart Rhythm, 16(4), 502-510. doi:10.1016/j.hrthm.2018.10.022Berger, W. R., Meulendijks, E. R., Limpens, J., van den Berg, N. W. E., Neefs, J., Driessen, A. H. G., … de Groot, J. R. (2019). Persistent atrial fibrillation: A systematic review and meta-analysis of invasive strategies. International Journal of Cardiology, 278, 137-143. doi:10.1016/j.ijcard.2018.11.127Nattel, S., Guasch, E., Savelieva, I., Cosio, F. G., Valverde, I., Halperin, J. L., … Camm, A. J. (2014). Early management of atrial fibrillation to prevent cardiovascular complications. European Heart Journal, 35(22), 1448-1456. doi:10.1093/eurheartj/ehu028Kirchhof, P., Benussi, S., Kotecha, D., Ahlsson, A., Atar, D., Casadei, B., … Zeppenfeld, K. (2016). 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. European Heart Journal, 37(38), 2893-2962. doi:10.1093/eurheartj/ehw210Scheuermeyer, F. X., Andolfatto, G., Christenson, J., Villa‐Roel, C., & Rowe, B. (2019). A Multicenter Randomized Trial to Evaluate a Chemical‐first or Electrical‐first Cardioversion Strategy for Patients With Uncomplicated Acute Atrial Fibrillation. Academic Emergency Medicine, 26(9), 969-981. doi:10.1111/acem.13669Fried, A. M., Strout, T. D., & Perron, A. D. (2021). Electrical cardioversion for atrial fibrillation in the emergency department: A large single-center experience. The American Journal of Emergency Medicine, 42, 115-120. doi:10.1016/j.ajem.2020.02.001Brandes, A., Crijns, H. J. G. M., Rienstra, M., Kirchhof, P., Grove, E. L., Pedersen, K. B., & Van Gelder, I. C. (2020). Cardioversion of atrial fibrillation and atrial flutter revisited: current evidence and practical guidance for a common procedure. EP Europace, 22(8), 1149-1161. doi:10.1093/europace/euaa057Alegret, J. M., Viñolas, X., Tajes, H., Valdovinos, P., Palomares, R., Arias, M. A., & Bazán, V. (2020). Utility of Amiodarone Pre-Treatment as a Facilitator of the Acute Success of Electrical Cardioversion in Persistent Atrial Fibrillation. Cardiovascular Drugs and Therapy, 34(1), 89-94. doi:10.1007/s10557-019-06934-5Piccini, J. P., & Fauchier, L. (2016). Rhythm control in atrial fibrillation. The Lancet, 388(10046), 829-840. doi:10.1016/s0140-6736(16)31277-6Jaakkola, S., Lip, G. Y. H., Biancari, F., Nuotio, I., Hartikainen, J. E. K., Ylitalo, A., & Airaksinen, K. E. J. (2017). Predicting Unsuccessful Electrical Cardioversion for Acute Atrial Fibrillation (from the AF-CVS Score). The American Journal of Cardiology, 119(5), 749-752. doi:10.1016/j.amjcard.2016.11.026Fujimoto, Y., Yodogawa, K., Maru, Y., Oka, E., Hayashi, H., Yamamoto, T., … Shimizu, W. (2018). Advanced interatrial block is an electrocardiographic marker for recurrence of atrial fibrillation after electrical cardioversion. International Journal of Cardiology, 272, 113-117. doi:10.1016/j.ijcard.2018.07.135GRÖNBERG, T., HARTIKAINEN, J. E. K., NUOTIO, I., BIANCARI, F., VASANKARI, T., NIKKINEN, M., … AIRAKSINEN, K. E. J. (2014). Can We Predict the Failure of Electrical Cardioversion of Acute Atrial Fibrillation? The FinCV Study. Pacing and Clinical Electrophysiology, 38(3), 368-375. doi:10.1111/pace.12561Doruchowska, A., Wita, K., Bochenek, T., Szydło, K., Filipecki, A., Staroń, A., … Trusz-Gluza, M. (2014). Role of left atrial speckle tracking echocardiography in predicting persistent atrial fibrillation electrical cardioversion success and sinus rhythm maintenance at 6 months. Advances in Medical Sciences, 59(1), 120-125. doi:10.1016/j.advms.2013.10.003Luong, C. L., Thompson, D. J. S., Gin, K. G., Jue, J., Nair, P., Lee, P.-K., … Tsang, T. S. M. (2016). Usefulness of the Atrial Emptying Fraction to Predict Maintenance of Sinus Rhythm After Direct Current Cardioversion for Atrial Fibrillation. The American Journal of Cardiology, 118(9), 1345-1349. doi:10.1016/j.amjcard.2016.07.066Wałek, P., Sielski, J., Gorczyca, I., Roskal-Wałek, J., Starzyk, K., Jaskulska-Niedziela, E., … Wożakowska-Kapłon, B. (2020). Left atrial mechanical remodelling assessed as the velocity of left atrium appendage wall motion during atrial fibrillation is associated with maintenance of sinus rhythm after electrical cardioversion in patients with persistent atrial fibrillation. PLOS ONE, 15(1), e0228239. doi:10.1371/journal.pone.0228239Zhao, T. X., Martin, C. A., Cooper, J. P., & Gajendragadkar, P. R. (2017). Coarse fibrillatory waves in atrial fibrillation predict success of electrical cardioversion. Annals of Noninvasive Electrocardiology, 23(4), e12528. doi:10.1111/anec.12528Lombardi, F., Colombo, A., Basilico, B., Ravaglia, R., Garbin, M., Vergani, D., … Fiorentini, C. (2001). Heart rate variability and early recurrence of atrial fibrillation after electrical cardioversion. Journal of the American College of Cardiology, 37(1), 157-162. doi:10.1016/s0735-1097(00)01039-1Vikman, S., Mäkikallio, T. H., Yli‐Mäyry, S., Nurmi, M., Juhani Airaksinen, K., & Huikuri, H. V. (2003). Heart rate variability and recurrence of atrial fibrillation after electrical cardioversion. Annals of Medicine, 35(1), 36-42. doi:10.1080/07853890310004110VAN DEN BERG, M. P., VAN NOORD, T., BROUWER, J., HAAKSMA, J., VAN VELDHUISEN, D. J., CRIJNS, H. J. G. M., & VAN GELDER, I. C. (2004). Clustering of RR Intervals Predicts Effective Electrical Cardioversion for Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 15(9), 1027-1033. doi:10.1046/j.1540-8167.2004.03686.xZOHAR, P., KOVACIC, M., BREZOCNIK, M., & PODBREGAR, M. (2005). Prediction of maintenance of sinus rhythm after electrical cardioversion of atrial fibrillation by non-deterministic modelling. Europace, 7(5), 500-507. doi:10.1016/j.eupc.2005.04.007Seeck, A., Rademacher, W., Fischer, C., Haueisen, J., Surber, R., & Voss, A. (2013). Prediction of atrial fibrillation recurrence after cardioversion—Interaction analysis of cardiac autonomic regulation. Medical Engineering & Physics, 35(3), 376-382. doi:10.1016/j.medengphy.2012.06.002Eren, H., Kaya, Ü., Öcal, L., Şenbaş, A., & Kalçık, M. (2019). The presence of fragmented QRS may predict the recurrence of nonvalvular atrial fibrillation after successful electrical cardioversion. Annals of Noninvasive Electrocardiology, 25(1). doi:10.1111/anec.12700Langberg, J. J., Burnette, J. C., & McTeague, K. K. (1998). Spectral analysis of the electrocardiogram predicts recurrence of atrial fibrillation after cardioversion. Journal of Electrocardiology, 31, 80-84. doi:10.1016/s0022-0736(98)90297-7Watson, J. N., Addison, P. S., Uchaipichat, N., Shah, A. S., & Grubb, N. R. (2007). Wavelet transform analysis predicts outcome of DC cardioversion for atrial fibrillation patients. Computers in Biology and Medicine, 37(4), 517-523. doi:10.1016/j.compbiomed.2006.08.003Cervigón, R., Sánchez, C., Castells, F., Blas, J. M., & Millet, J. (2007). Wavelet analysis of electrocardiograms to characterize recurrent atrial fibrillation. Journal of the Franklin Institute, 344(3-4), 196-211. doi:10.1016/j.jfranklin.2006.10.005Alcaraz, R., & Rieta, J. J. (2008). A non-invasive method to predict electrical cardioversion outcome of persistent atrial fibrillation. Medical & Biological Engineering & Computing, 46(7), 625-635. doi:10.1007/s11517-008-0348-5Alcaraz, R., & Rieta, J. J. (2009). Time and frequency recurrence analysis of persistent atrial fibrillation after electrical cardioversion. Physiological Measurement, 30(5), 479-489. doi:10.1088/0967-3334/30/5/005Lankveld, T., de Vos, C. B., Limantoro, I., Zeemering, S., Dudink, E., Crijns, H. J., & Schotten, U. (2016). Systematic analysis of ECG predictors of sinus rhythm maintenance after electrical cardioversion for persistent atrial fibrillation. Heart Rhythm, 13(5), 1020-1027. doi:10.1016/j.hrthm.2016.01.004ALCARAZ, R., HORNERO, F., & RIETA, J. J. (2011). Noninvasive Time and Frequency Predictors of Long-Standing Atrial Fibrillation Early Recurrence after Electrical Cardioversion. Pacing and Clinical Electrophysiology, 34(10), 1241-1250. doi:10.1111/j.1540-8159.2011.03125.xCosta, M., Goldberger, A. L., & Peng, C.-K. (2002). Multiscale Entropy Analysis of Complex Physiologic Time Series. Physical Review Letters, 89(6). doi:10.1103/physrevlett.89.068102Humeau-Heurtier, A. (2015). The Multiscale Entropy Algorithm and Its Variants: A Review. Entropy, 17(5), 3110-3123. doi:10.3390/e17053110Wu, S.-D., Wu, C.-W., Lin, S.-G., Wang, C.-C., & Lee, K.-Y. (2013). Time Series Analysis Using Composite Multiscale Entropy. Entropy, 15(3), 1069-1084. doi:10.3390/e15031069Valencia, J. F., Porta, A., Vallverdu, M., Claria, F., Baranowski, R., Orlowska-Baranowska, E., & Caminal, P. (2009). Refined Multiscale Entropy: Application to 24-h Holter Recordings of Heart Period Variability in Healthy and Aortic Stenosis Subjects. IEEE Transactions on Biomedical Engineering, 56(9), 2202-2213. doi:10.1109/tbme.2009.2021986Alcaraz, R., & Rieta, J. J. (2008). Adaptive singular value cancelation of ventricular activity in single-lead atrial fibrillation electrocardiograms. Physiological Measurement, 29(12), 1351-1369. doi:10.1088/0967-3334/29/12/001Vest, A. N., Da Poian, G., Li, Q., Liu, C., Nemati, S., Shah, A. J., & Clifford, G. D. (2018). An open source benchmarked toolbox for cardiovascular waveform and interval analysis. Physiological Measurement, 39(10), 105004. doi:10.1088/1361-6579/aae021Nabil, D., & Bereksi Reguig, F. (2015). Ectopic beats detection and correction methods: A review. Biomedical Signal Processing and Control, 18, 228-244. doi:10.1016/j.bspc.2015.01.008Martínez, A., Alcaraz, R., & Rieta, J. J. (2013). Ventricular activity morphological characterization: Ectopic beats removal in long term atrial fibrillation recordings. Computer Methods and Programs in Biomedicine, 109(3), 283-292. doi:10.1016/j.cmpb.2012.10.011Alcaraz Martínez, R. (2013). Journal of Medical and Biological Engineering, 33(5), 455. doi:10.5405/jmbe.1069Corino, V. D. A., Sassi, R., Mainardi, L. T., & Cerutti, S. (2006). Signal processing methods for information enhancement in atrial fibrillation: Spectral analysis and non-linear parameters. Biomedical Signal Processing and Control, 1(4), 271-281. doi:10.1016/j.bspc.2006.12.003Alcaraz, R., & Rieta, J. J. (2009). Sample entropy of the main atrial wave predicts spontaneous termination of paroxysmal atrial fibrillation. Medical Engineering & Physics, 31(8), 917-922. doi:10.1016/j.medengphy.2009.05.002Richman, J. S., & Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology, 278(6), H2039-H2049. doi:10.1152/ajpheart.2000.278.6.h2039Alcaraz, R., Abásolo, D., Hornero, R., & Rieta, J. J. (2010). Optimal parameters study for sample entropy-based atrial fibrillation organization analysis. Computer Methods and Programs in Biomedicine, 99(1), 124-132. doi:10.1016/j.cmpb.2010.02.009Costa, M., Peng, C.-K., L. Goldberger, A., & Hausdorff, J. M. (2003). Multiscale entropy analysis of human gait dynamics. Physica A: Statistical Mechanics and its Applications, 330(1-2), 53-60. doi:10.1016/j.physa.2003.08.022Pincus, S. M., & Goldberger, A. L. (1994). Physiological time-series analysis: what does regularity quantify? American Journal of Physiology-Heart and Circulatory Physiology, 266(4), H1643-H1656. doi:10.1152/ajpheart.1994.266.4.h1643Maturana-Candelas, A., Gómez, C., Poza, J., Pinto, N., & Hornero, R. (2019). EEG Characterization of the Alzheimer’s Disease Continuum by Means of Multiscale Entropies. Entropy, 21(6), 544. doi:10.3390/e21060544Crespo, A., Álvarez, D., Gutiérrez-Tobal, G. C., Vaquerizo-Villar, F., Barroso-García, V., Alonso-Álvarez, M. L., … Campo, F. del. (2017). Multiscale Entropy Analysis of Unattended Oximetric Recordings to Assist in the Screening of Paediatric Sleep Apnoea at Home. Entropy, 19(6), 284. doi:10.3390/e19060284Massey, F. J. (1951). The Kolmogorov-Smirnov Test for Goodness of Fit. Journal of the American Statistical Association, 46(253), 68-78. doi:10.1080/01621459.1951.10500769Williams, L. L., & Quave, K. (2019). Comparing Two Groups: t-Tests. Quantitative Anthropology, 89-104. doi:10.1016/b978-0-12-812775-9.00007-4Zweig, M. H., & Campbell, G. (1993). Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clinical Chemistry, 39(4), 561-577. doi:10.1093/clinchem/39.4.561Qu, Z. (2011). Chaos in the genesis and maintenance of cardiac arrhythmias. Progress in Biophysics and Molecular Biology, 105(3), 247-257. doi:10.1016/j.pbiomolbio.2010.11.001Qu, Z., Hu, G., Garfinkel, A., & Weiss, J. N. (2014). Nonlinear and stochastic dynamics in the heart. Physics Reports, 543(2), 61-162. doi:10.1016/j.physrep.2014.05.002Qu, Z., Garfinkel, A., Chen, P.-S., & Weiss, J. N. (2000). Mechanisms of Discordant Alternans and Induction of Reentry in Simulated Cardiac Tissue. Circulation, 102(14), 1664-1670. doi:10.1161/01.cir.102.14.1664Dharmaprani, D., Dykes, L., McGavigan, A. D., Kuklik, P., Pope, K., & Ganesan, A. N. (2018). Information Theory and Atrial Fibrillation (AF): A Review. Frontiers in Physiology, 9. doi:10.3389/fphys.2018.00957Schotten, U., Dobrev, D., Platonov, P. G., Kottkamp, H., & Hindricks, G. (2016). Current controversies in determining the main mechanisms of atrial fibrillation. Journal of Internal Medicine, 279(5), 428-438. doi:10.1111/joim.12492Yin, R., Fu, Y., Yang, Z., Li, B., Pen, J., & Zheng, Z. (2017). Fibrillatory wave amplitude on transesophageal ECG as a marker of left atrial low-voltage areas in patients with persistent atrial fibrillation. Annals of Noninvasive Electrocardiology, 22(4), e12421. doi:10.1111/anec.12421Pourafkari, L., Baghbani-Oskouei, A., Aslanabadi, N., Tajlil, A., Ghaffari, S., Sadigh, A. M., … Nader, N. D. (2018). Fine versus coarse atrial fibrillation in rheumatic mitral stenosis: The impact of aging and the clinical significance. Annals of Noninvasive Electrocardiology, 23(4), e12540. doi:10.1111/anec.12540Nault, I., Lellouche, N., Matsuo, S., Knecht, S., Wright, M., Lim, K.-T., … Haïssaguerre, M. (2009). Clinical value of fibrillatory wave amplitude on surface ECG in patients with persistent atrial fibrillation. Journal of Interventional Cardiac Electrophysiology, 26(1), 11-19. doi:10.1007/s10840-009-9398-3Alcaraz, R., Sandberg, F., Sörnmo, L., & Rieta, J. J. (2011). Classification of Paroxysmal and Persistent Atrial Fibrillation in Ambulatory ECG Recordings. IEEE Transactions on Biomedical Engineering, 58(5), 1441-1449. doi:10.1109/tbme.2011.211265

    Evaluating MDC with incentives in P2PTV systems

    No full text
    The popularity of P2P video streaming is raising the interest of broadcasters, operators and service providers. Concretely, mesh-pull based P2P systems are the most extended ones. Despite these systems address scalability efficiently, they still present limitations that difficult them to offer the same user experience in comparison with traditional TV. These ones are mainly the freeriding effect, long start-up delays and the impact of churn and bandwidth heterogeneity. In this paper we study the performance of Multiple Description Coding (MDC) combined with the use of incentives for redistribution in order to mitigate some of them by means of simulations. Simulation results show that the use of MDC and incentive-based scheduling strategies improve the overall performance of the system. Moreover, an extended version of the P2PTVSim simulator has been developed to support MDC and incentives.Peer ReviewedPostprint (published version

    Comparative study of the pharmacologic potency of four preparations of Carbamacepin

    No full text
    El objeto del presente estudio fue evaluar la potencia anticonvulsivante de tres formulaciones farmacéuticas de Carbamacepina y de la materia prima sin procesamiento, en ratones, frente al Pentilenetetrazol (PTZ), una sustancia química convulsivante. Para ello se determinó el porcentaje de inhibición del efecto letal de PTZ con 4 dosis de cada formulación y de la materia prima. En este modelo experimental, los resultados señalan que no hay diferencias significativas en la capacidad de antagonizar el efecto de la dosis máxima de PTZ entre las 4 preparaciones bajo estudio. Por lo tanto, se sugiere que no diferirían en su efecto anticonvulsivante.The aim of the present study was to assess the anticonvulsant property of both the three carbamacepin pharmaceutical preparations and the raw material, in mice, after Pentilenetetrazol (PlZ), a convulsant chemical. Thus, the percentage of inhibition of the lethal effect of PTZ with four doses of each preparation was determined. With this experimental model, the results indicate that there are no significant differences among the four preparations under study in the capacity to antagonize the PTZ maximal dose effect. Therefore, it is suggested that they would not differ in their anticonvulsant properties.Colegio de Farmacéuticos de la Provincia de Buenos Aire

    Comparative study of the pharmacologic potency of four preparations of Carbamacepin

    No full text
    El objeto del presente estudio fue evaluar la potencia anticonvulsivante de tres formulaciones farmacéuticas de Carbamacepina y de la materia prima sin procesamiento, en ratones, frente al Pentilenetetrazol (PTZ), una sustancia química convulsivante. Para ello se determinó el porcentaje de inhibición del efecto letal de PTZ con 4 dosis de cada formulación y de la materia prima. En este modelo experimental, los resultados señalan que no hay diferencias significativas en la capacidad de antagonizar el efecto de la dosis máxima de PTZ entre las 4 preparaciones bajo estudio. Por lo tanto, se sugiere que no diferirían en su efecto anticonvulsivante.The aim of the present study was to assess the anticonvulsant property of both the three carbamacepin pharmaceutical preparations and the raw material, in mice, after Pentilenetetrazol (PlZ), a convulsant chemical. Thus, the percentage of inhibition of the lethal effect of PTZ with four doses of each preparation was determined. With this experimental model, the results indicate that there are no significant differences among the four preparations under study in the capacity to antagonize the PTZ maximal dose effect. Therefore, it is suggested that they would not differ in their anticonvulsant properties.Colegio de Farmacéuticos de la Provincia de Buenos Aire

    Metadata in a Digital Library of Periodicals

    No full text
    This paper is devoted to the analysis and design of a digital library of periodicals and academic journals. This kind of libraries pertains to a set of applications about historical structured documents, which has been identified in our previous work [Ara96][Ara97]. We have addressed these applications from the point of view of temporal object-oriented databases, so that the whole multimedia contents of the academic journals are stored into a document database preserving the same logical organisation as given by publishers. In this context, the database query language is in charge of extracting the global or partial contents of stored journals by describing the wished features such as authors, keywords, dates as well as, their temporal relationships. In our model, metadata plays an outstanding role. Firstly, the concept of metadata provides a well-suited framework to model and classify the composition relationships between documents and their temporal properties. By the other hand, the use of metadata improves the expressive power of both document definition and query languages

    Multidimensional Fibrillatory Waves Analysis for Improved Electrical Cardioversion Outcome Prediction in Persistent Atrial Fibrillation

    Full text link
    © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.[EN] The European Society of Cardiology guidelines recommend electrical cardioversion (ECV) as a rhythm control strategy in persistent atrial fibrillation (AF). Although being able to initially restore sinus rhythm in most patients, mid- and long-term AF recurrence rates are high. In this context, anticipation of ECV outcome is interesting to rationalize the management of AF patients. To this end, several parameters have been recently proposed for atrial activity (AA) characterization, such as fibrillatory wave amplitude (FWA), dominant frequency (DF) and sample entropy (SEn). These indices have revealed promising results, but have been mainly computed from lead V1, thus discarding spatial information from the remaining leads. Hence, this work explores whether a multidimensional extension of these parameters can improve ECV outcome prediction. Results showed that multidimensional parameters provided more balanced values of sensitivity and specificity than unidimensional ones. While FWA and DF showed similar discriminant ability among both approaches, multivariate SEn improved the discriminant ability of its univariate version by 5%, thus predicting 80% of the ECV procedures correctly. Consequently, whereas multivariate extension of linear parameters did not reveal new predictive information, multidimensional entropy analysis was able to quantify novel AA dynamics, which have been helpful in improving ECV outcome prediction.This research was funded by projects DPI2017-83952-C3 from MINECO/AEI/FEDER EU, SBPLY/17/180501/000411 from "Junta de Castilla la Mancha" and AICO/2019/036 from "Generalitat Valenciana".Cirugeda, EM.; Calero, S.; Plancha, E.; Enero, J.; Rieta, JJ.; Alcaraz, R. (2020). Multidimensional Fibrillatory Waves Analysis for Improved Electrical Cardioversion Outcome Prediction in Persistent Atrial Fibrillation. IEEE. 1-4. https://doi.org/10.1109/EHB50910.2020.9280226S1

    Prediction of Early Failure in Electrical Cardioversion of Atrial Fibrillation Using Refined Multiscale Entropy

    Full text link
    [EN] In the management of atrial fibrillation (AF), electrical cardioversion (ECV) is a common treatment. Although its initial success rate is high, many patients present AF recurrence after some weeks or months. Hence, being able to identify patients at low chance of mid-term sinus rhythm maintenance is important for a rationale therapeutic strategy. To this end, several parameters assessing fibrillatory (f-) waves have been introduced, however, with limited predictive ability. Moreover, the cardiovascular system exhibits nonlinear dynamics at different time-scales that these indices do not account for. Hence, the present work evaluates the ability of the multiscale entropy (MSE) analysis of the f-waves to improve preoperative forecasts of ECV outcome. Both traditional MSE and a refined version (RMSE) were applied to the main f waves component obtained for standard lead V1. As a reference, previously proposed predictors were also computed. Results revealed that RMSE was able to anticipate AF recurrence after 1 month of ECV with an accuracy around 78%. Moreover, a Naive Bayes model combining previous parameters and RMSE indices reported a discriminant ability 10% higher than single metrics. It could then be concluded that analysis of nonlinear dynamics at large time-scales can enhance ECV outcome predictions.This research was funded by projects: DPI2017-83952-C3 from MINECO/AEI/FEDER EU, SBPLY/17/180501000411 from Junta de Castilla la Mancha and AICO/2019/036 from Generalitat Valenciana.Cirugeda, EM.; Calero, S.; Hidalgo, VM.; Enero, J.; Rieta, JJ.; Alcaraz, R. (2020). Prediction of Early Failure in Electrical Cardioversion of Atrial Fibrillation Using Refined Multiscale Entropy. IEEE. 1-4. https://doi.org/10.1109/EHB50910.2020.9280294S1

    Evaluating MDC with incentives in P2PTV systems

    No full text
    The popularity of P2P video streaming is raising the interest of broadcasters, operators and service providers. Concretely, mesh-pull based P2P systems are the most extended ones. Despite these systems address scalability efficiently, they still present limitations that difficult them to offer the same user experience in comparison with traditional TV. These ones are mainly the freeriding effect, long start-up delays and the impact of churn and bandwidth heterogeneity. In this paper we study the performance of Multiple Description Coding (MDC) combined with the use of incentives for redistribution in order to mitigate some of them by means of simulations. Simulation results show that the use of MDC and incentive-based scheduling strategies improve the overall performance of the system. Moreover, an extended version of the P2PTVSim simulator has been developed to support MDC and incentives.Peer Reviewe
    corecore