11,145 research outputs found
Heat Kernel for Spin-3/2 Rarita-Schwinger Field in General Covariant Gauge
The heat kernel for the spin-3/2 Rarita-Schwinger gauge field on an arbitrary
Ricci flat space-time () is investigated in a family of covariant gauges
with one gauge parameter . The -dependent term of the kernel is
expressed by the spin-1/2 heat kernel. It is shown that the axial anomaly and
the one-loop divegence of the action are -independent, and that the
conformal anomaly has an -dependent total derivative term in
dimensions.Comment: 11 pages, latex, ITP-SB-94-3
Fourier analyses of commensurability oscillations in Fibonacci lateral superlattices
Magnetotransport measurements have been performed on Fibonacci lateral
superlattices (FLSLs) -- two-dimensional electron gases subjected to a weak
potential modulation arranged in the Fibonacci sequence, LSLLSLS..., with
L/S=tau (the golden ratio). Complicated commensurability oscillation (CO) is
observed, which can be accounted for as a superposition of a series of COs each
arising from a sinusoidal modulation representing the characteristic length
scale of one of the self-similar generations in the Fibonacci sequence.
Individual CO components can be separated out from the magnetoresistance trace
by performing a numerical Fourier band-pass filter. From the analysis of the
amplitude of a single-component CO thus extracted, the magnitude of the
corresponding Fourier component in the potential modulation can be evaluated.
By examining all the Fourier contents observed in the magnetoresistance trace,
the profile of the modulated potential seen by the electrons can be
reconstructed with some remaining ambiguity about the interrelation of the
phase between different components.Comment: 11 pages, 10 figures, added references in Introduction, minor
revision
Configurational factors in the perception of unfamiliar faces
Young et al (1987) have demonstrated that the juxtaposition of top and bottom halves of different faces produces a powerful impression of a novel face. It is difficult to isolate perceptually either half of the 'new' face. Inversion of the stimulus, however, makes this task easier. Upright chimeric faces appear to evoke strong and automatic configurational processing mechanisms which interfere with selective piecemeal processing. In this paper three experiments are described in which a matching paradigm was used to show that Young et al's findings apply to unfamiliar as well as to familiar faces. The results highlight the way in which minor procedural differences may alter the way in which subjects perform face-recognition tasks
Semimetalic antiferromagnetism in the half-Heusler compound CuMnSb
The half-Heusler compound CuMnSb, the first antiferromagnet (AFM) in the
Mn-based class of Heuslers and half-Heuslers that contains several conventional
and half metallic ferromagnets, shows a peculiar stability of its magnetic
order in high magnetic fields. Density functional based studies reveal an
unusual nature of its unstable (and therefore unseen) paramagnetic state, which
for one electron less (CuMnSn, for example) would be a zero gap semiconductor
(accidentally so) between two sets of very narrow, topologically separate bands
of Mn 3d character. The extremely flat Mn 3d bands result from the environment:
Mn has four tetrahedrally coordinated Cu atoms whose 3d states lie well below
the Fermi level, and the other four tetrahedrally coordinated sites are empty,
leaving chemically isolated Mn 3d states. The AFM phase can be pictured
heuristically as a self-doped CuMnSb compensated semimetal
with heavy mass electrons and light mass holes, with magnetic coupling
proceeding through Kondo and/or antiKondo coupling separately through the two
carrier types. The ratio of the linear specific heat coefficient and the
calculated Fermi level density of states indicates a large mass enhancement
, or larger if a correlated band structure is taken as the
reference
Microwave-induced excess quasiparticles in superconducting resonators measured through correlated conductivity fluctuations
We have measured the number of quasiparticles and their lifetime in aluminium
superconducting microwave resonators. The number of excess quasiparticles below
160 mK decreases from 72 to 17 m with a 6 dB decrease of the
microwave power. The quasiparticle lifetime increases accordingly from 1.4 to
3.5 ms. These properties of the superconductor were measured through the
spectrum of correlated fluctuations in the quasiparticle system and condensate
of the superconductor, which show up in the resonator amplitude and phase
respectively. Because uncorrelated noise sources vanish, fluctuations in the
superconductor can be studied with a sensitivity close to the vacuum noise
Reduced frequency noise in superconducting resonators
We report a reduction of the frequency noise in coplanar waveguide
superconducting resonators. The reduction of 7 dB is achieved by removing the
exposed dielectric substrate surface from the region with high electric fields
and by using NbTiN. In a model-analysis the surface of NbTiN is found to be a
negligible source of noise, experimentally supported by a comparison with NbTiN
on SiOx resonators. The reduction is additive to decreasing the noise by
widening the resonators.Comment: 4 pages, 4 figure
Photon noise limited radiation detection with lens-antenna coupled Microwave Kinetic Inductance Detectors
Microwave Kinetic Inductance Detectors (MKIDs) have shown great potential for
sub-mm instrumentation because of the high scalability of the technology. Here
we demonstrate for the first time in the sub-mm band (0.1...2 mm) a photon
noise limited performance of a small antenna coupled MKID detector array and we
describe the relation between photon noise and MKID intrinsic
generation-recombination noise. Additionally we use the observed photon noise
to measure the optical efficiency of detectors to be 0.8+-0.2.Comment: The following article has been submitted to AP
Performance of Hybrid NbTiN-Al Microwave Kinetic Inductance Detectors as Direct Detectors for Sub-millimeter Astronomy
In the next decades millimeter and sub-mm astronomy requires large format
imaging arrays and broad-band spectrometers to complement the high spatial and
spectral resolution of the Atacama Large Millimeter/sub-millimeter Array. The
desired sensors for these instruments should have a background limited
sensitivity and a high optical efficiency and enable arrays thousands of pixels
in size. Hybrid microwave kinetic inductance detectors consisting of NbTiN and
Al have shown to satisfy these requirements. We present the second generation
hybrid NbTiN-Al MKIDs, which are photon noise limited in both phase and
amplitude readout for loading levels fW. Thanks to the
increased responsivity, the photon noise level achieved in phase allows us to
simultaneously read out approximately 8000 pixels using state-of-the-art
electronics. In addition, the choice of superconducting materials and the use
of a Si lens in combination with a planar antenna gives these resonators the
flexibility to operate within the frequency range THz. Given
these specifications, hybrid NbTiN-Al MKIDs will enable astronomically usable
kilopixel arrays for sub-mm imaging and moderate resolution spectroscopy.Comment: 7 pages, 3 figures. Presented at SPIE Astronomical Telescopes and
Instrumentation 2014: Millimeter, Submillimeter, and Far-Infrared Detectors
and Instrumentation for Astronomy VI
- …