7,155 research outputs found
Effect of Oscillating Landau Bandwidth on the Integer Quantum Hall Effect in a Unidirectional Lateral Superlattice
We have measured activation gaps for odd-integer quantum Hall states in a
unidirectional lateral superlattice (ULSL) -- a two-dimensional electron gas
(2DEG) subjected to a unidirectional periodic modulation of the electrostatic
potential. By comparing the activation gaps with those simultaneously measured
in the adjacent section of the same 2DEG sample without modulation, we find
that the gaps are reduced in the ULSL by an amount corresponding to the width
acquired by the Landau levels through the introduction of the modulation. The
decrement of the activation gap varies with the magnetic field following the
variation of the Landau bandwidth due to the commensurability effect. Notably,
the decrement vanishes at the flat band conditions.Comment: 7 pages, 6 figures, minor revisio
Semimetalic antiferromagnetism in the half-Heusler compound CuMnSb
The half-Heusler compound CuMnSb, the first antiferromagnet (AFM) in the
Mn-based class of Heuslers and half-Heuslers that contains several conventional
and half metallic ferromagnets, shows a peculiar stability of its magnetic
order in high magnetic fields. Density functional based studies reveal an
unusual nature of its unstable (and therefore unseen) paramagnetic state, which
for one electron less (CuMnSn, for example) would be a zero gap semiconductor
(accidentally so) between two sets of very narrow, topologically separate bands
of Mn 3d character. The extremely flat Mn 3d bands result from the environment:
Mn has four tetrahedrally coordinated Cu atoms whose 3d states lie well below
the Fermi level, and the other four tetrahedrally coordinated sites are empty,
leaving chemically isolated Mn 3d states. The AFM phase can be pictured
heuristically as a self-doped CuMnSb compensated semimetal
with heavy mass electrons and light mass holes, with magnetic coupling
proceeding through Kondo and/or antiKondo coupling separately through the two
carrier types. The ratio of the linear specific heat coefficient and the
calculated Fermi level density of states indicates a large mass enhancement
, or larger if a correlated band structure is taken as the
reference
Possible effects of tilt order on phase transitions of a fixed connectivity surface model
We study the phase structure of a phantom tethered surface model shedding
light on the internal degrees of freedom (IDOF), which correspond to the
three-dimensional rod like structure of the lipid molecules. The so-called tilt
order is assumed as IDOF on the surface model. The model is defined by
combining the conventional spherical surface model and the XY model, which
describes not only the interaction between lipids but also the interaction
between the lipids and the surface. The interaction strength between IDOF and
the surface varies depending on the interaction strength between the variables
of IDOF. We know that the model without IDOF undergoes a first-order transition
of surface fluctuations and a first-order collapsing transition. We observe in
this paper that the order of the surface fluctuation transition changes from
first-order to second-order and to higher-order with increasing strength of the
interaction between IDOF variables. On the contrary, the order of collapsing
transition remains first-order and is not influenced by the presence of IDOF.Comment: 20 pages, 14 figure
Anomalous Hall effect in field-effect structures of (Ga,Mn)As
The anomalous Hall effect in metal-insulator-semiconductor structures having
thin (Ga,Mn)As layers as a channel has been studied in a wide range of Mn and
hole densities changed by the gate electric field. Strong and unanticipated
temperature dependence, including a change of sign, of the anomalous Hall
conductance has been found in samples with the highest Curie
temperatures. For more disordered channels, the scaling relation between
and , similar to the one observed previously for
thicker samples, is recovered.Comment: 5 pages, 5 figure
Moduli/Inflaton Mixing with Supersymmetry Breaking Field
A heavy scalar field such as moduli or an inflaton generally mixes with a field responsible for the supersymmetry breaking. We study the scalar decay into the standard model particles and their superpartners, gravitinos, and the supersymmetry breaking sector, particularly paying attention to decay modes that proceed via the mixing between the scalar and the supersymmetry breaking field. The impacts of the new decay processes on cosmological scenarios are also discussed; the modulus field generically produces too much gravitinos, and most of the inflation models tend to result in too high reheating temperature and/or gravitino overproduction
Bottom-Up Approach to Moduli Dynamics in Heavy Gravitino Scenario : Superpotential, Soft Terms and Sparticle Mass Spectrum
The physics of moduli fields is examined in the scenario where the gravitino
is relatively heavy with mass of order 10 TeV, which is favored in view of the
severe gravitino problem. The form of the moduli superpotential is shown to be
determined, if one imposes a phenomenological requirement that no physical CP
phase arise in gaugino masses from conformal anomaly mediation. This bottom-up
approach allows only two types of superpotential, each of which can have its
origins in a fundamental underlying theory such as superstring. One
superpotential is the sum of an exponential and a constant, which is identical
to that obtained by Kachru et al (KKLT), and the other is the racetrack
superpotential with two exponentials. The general form of soft supersymmetry
breaking masses is derived, and the pattern of the superparticle mass spectrum
in the minimal supersymmetric standard model is discussed with the KKLT-type
superpotential. It is shown that the moduli mediation and the anomaly mediation
make comparable contributions to the soft masses. At the weak scale, the
gaugino masses are rather degenerate compared to the minimal supergravity,
which bring characteristic features on the superparticle masses. In particular,
the lightest neutralino, which often constitutes the lightest superparticle and
thus a dark matter candidate, is a considerable admixture of gauginos and
higgsinos. We also find a small mass hierarchy among the moduli, gravitino, and
superpartners of the standard-model fields. Cosmological implications of the
scenario are briefly described.Comment: 45 pages, 10 figures, typos correcte
Anisotropic transport in unidirectional lateral superlattice around half-filling of the second Landau level
We have observed marked transport anisotropy in short period (a=92 nm)
unidirectional lateral superlattices around filling factors nu=5/2 and 7/2:
magnetoresistance shows a sharp peak for current along the modulation grating
while a dip appears for current across the grating. By altering the ratio a/l
(with l=sqrt{hbar/eB_perp} the magnetic length) via changing the electron
density n_e, it is shown that the nu=5/2 anisotropic features appear in the
range 6.6 alt a/l alt 7.2 varying their intensities, becoming most conspicuous
at a/l simeq 6.7. The peak/dip broadens with temperature roughly preserving its
height/depth up to 250 mK. Tilt experiments reveal that the structures are
slightly enhanced by an in-plane magnetic field B_| perpendicular to the
grating but are almost completely destroyed by B_| parallel to the grating. The
observations suggest the stabilization of a unidirectional charge-density-wave
or stripe phase by weak external periodic modulation at the second Landau
level.Comment: REVTeX, 5 pages, 3 figures, Some minor revisions, Added notes and
reference
Timing and spectral studies of the transient X-ray pulsar EXO 053109-6609.2 with ASCA and Beppo-SAX
We report timing and spectral properties of the transient Be X-ray pulsar EXO
053109--6609.2 studied using observations made with the ASCA and BeppoSAX
observatories. Though there must have been at least one spin-down episode of
the pulsar since its discovery, the new pulse period measurements show a
monotonic spin-up trend since 1996. The pulse profile is found to have marginal
energy dependence. There is also evidence for strong luminosity dependence of
the pulse profile, a single peaked profile at low luminosity that changes to a
double peaked profile at high luminosity. This suggests a change in the
accretion pattern at certain luminosity level. The X-ray spectrum is found to
consist of a simple power-law with photon index in the range of 0.4--0.8. At
high intensity level the spectrum also shows presence of weak iron emission
line.Comment: 12 pages, 8 figures, Accepted for publication in Ap
Entropy production by Q-ball decay for diluting long-lived charged particles
The cosmic abundance of a long-lived charged particle such as a stau is
tightly constrained by the catalyzed big bang nucleosynthesis. One of the ways
to evade the constraints is to dilute those particles by a huge entropy
production. We evaluate the dilution factor in a case that non-relativistic
matter dominates the energy density of the universe and decays with large
entropy production. We find that large Q balls can do the job, which is
naturally produced in the gauge-mediated supersymmetry breaking scenario.Comment: 8 pages, 1 figur
- …