57 research outputs found

    Expression of cysLT1 and cysLT2 Receptor in Chronic Hyperplastic Eosinophilic Sinusitis

    Get PDF
    Elevated production of cysteinyl leukotrienes (cysLTs) from sinus tissues and abundant sinus eosinophils are characteristic features of chronic hyperplastic eosinophilic sinusitis (CHS). CysLTs exert their action through G-protein-coupled receptors named cysLTs receptor type I (cysLT1R) and type II (cysLT2R). These expressions of cysLT receptors in the sinus mucosa have yet to be clarified and the relationship between eosinophilia and the expression of these receptors remains obscure. We compared the expressions of cysLT1R and cysLT2R in the sinus mucosa in patients with CHS, non-eosinophilic chronic sinusitis (NECS), and control sinus tissues; and analyzed the correlation between the expression of CysLTRs and the presence of sinus eosinophils by immunohistochemistry and real-time PCR. A significantly higher percentage of eosinophils expressing cysLT2R protein was observed in patients with CHS compared with NECS and controls. In addition, cysLT2R mRNA expression in CHS was significantly higher than in NECS and controls. Furthermore, a positive correlation was observed between cysLT2R mRNA expression and the number of infiltrated eosinophils. In contrast, the cysLT1R mRNA expression did not differ significantly among these groups. The effect of cysLTs on sinus eosinophils may be mediated through the cysLT2R in patients with CHS. These results may suggest the therapeutic benefit of cysLT2R antagonists in CHS

    Monoclonal gammopathy of renal significance (MGRS)-related AL amyloidosis complicated by amyloid myopathy: a case report

    Get PDF
    BACKGROUND: Lately, monoclonal gammopathy of renal significance (MGRS) has been defined as a group of renal disorders that are strongly associated with monoclonal protein, including amyloid immunoglobulin light chain (AL) amyloidosis. Amyloid myopathy is rare (1.5% of all patients with amyloidosis) and the prognosis is poor. Furthermore, only approximately 20% of patients with amyloid myopathy are reported to have renal involvement, indicating a lack of data in the literature. CASE PRESENTATION: Here, we report a rare case of MGRS-related AL amyloidosis complicated by amyloid myopathy that presented with muscle weakness in the upper and lower limbs, neck and fingers, and nephrotic syndrome. Blood, urine, and bone marrow examination revealed monoclonal gammopathy of undetermined significance (MGUS) (Bence Jones protein-lambda). Muscle biopsy of the vastus lateralis muscle demonstrated amyloid proteins in the sarcolemma and in the blood vessel walls on Congo red staining, suggesting amyloid myopathy, and tiny inclusions in fibers on modified Gomori trichrome stain. Although we thought they were reminiscent of nemaline bodies, we could not confirm the nature of this structure. Renal biopsy demonstrated amyloid proteins in the mesangial region, part of the capillary walls, and the blood vessel walls on direct fast scarlet staining. As these amyloid proteins were positive for p-component staining and negative for amyloid A staining, β2-microglobulin, and pre-albumin, and as lambda light chains were positive in the mesangial region, we diagnosed the patient with MGRS-related AL amyloidosis. Although he was treated with melphalan and dexamethasone, his symptoms did not improve. CONCLUSIONS: AL amyloidosis involving the kidneys and muscles has a poor prognosis, and a delayed diagnosis of amyloid myopathy is common because of its rarity and frequent misdiagnosis, which increases organ function deterioration. Therefore, early detection, therapeutic intervention, and careful follow-up are crucial

    Gravitino Dark Matter and Non-Gaussianity

    Full text link
    We investigate density fluctuations in a scenario with gravitino dark matter in the framework of modulated reheating, which is known to generate large non-Gaussianity. We show that gravitino dark matter is disfavored if primordial fluctuations have large local-type non-Gaussianity in this framework. We also briefly discuss the case with the curvaton mechanism and some other possible dark matter scenarios.Comment: 12 pages, published in PL

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Lineage tracing analysis defines erythropoietin-producing cells as a distinct subpopulation of resident fibroblasts with unique behaviors

    Get PDF
    腎臓の造血ホルモン、プロの細胞集団が産生. 京都大学プレスリリース. 2022-06-10.Kyoto scientists discover ‘crack team’ of kidney cells that are key to disease recovery. 京都大学プレスリリース. 2022-06-10.Erythropoietin (Epo) is produced by a subpopulation of resident fibroblasts in the healthy kidney. We have previously demonstrated that, during kidney fibrosis, kidney fibroblasts including Epo-producing cells transdifferentiate into myofibroblasts and lose their Epo-producing ability. However, it remains unclear whether Epo-producing cells survive and transform into myofibroblasts during fibrosis because previous studies did not specifically label Epo-producing cells in pathophysiological conditions. Here, we generated Epo[CreERT2/+] mice, a novel mouse strain that enables labeling of Epo-producing cells at desired time points and examined the behaviors of Epo-producing cells under pathophysiological conditions. Lineage -labeled cells that were producing Epo when labeled were found to be a small subpopulation of fibroblasts located in the interstitium of the kidney, and their number increased during phlebotomy-induced anemia. Around half of lineage-labeled cells expressed Epo mRNA, and this percentage was maintained even 16 weeks after recombination, supporting the idea that a distinct subpopulation of cells with Epo-producing ability makes Epo repeatedly. During fibrosis caused by ureteral obstruction, Epo[CreERT2/+] -labeled cells were found to transdifferentiate into myofibroblasts with concomitant loss of Epo-producing ability, and their numbers and the proportion among resident fibroblasts increased during fibrosis, indicating their high proliferative capacity. Finally, we confirmed that EpoCreERT2/+-labeled cells that lost their Epo-producing ability during fibrosis regained their ability after kidney repair due to relief of the ureteral obstruction. Thus, our analyses have revealed previously unappreciated characteristic behaviors of Epo-producing cells, which had not been clearly distinguished from those of resident fibroblasts

    Analysis of Helper T Cell Responses to Cry j 1-Derived Peptides in Patients with Nasal Allergy: Candidate for Peptide-Based Immunotherapy of Japanese Cedar Pollinosis

    No full text
    Background: Allergen specific immunotherapy is highly effective, but adverse events may occur during treatment. Peptide-based immunotherapy has been proposed as one of new strategies for reduction of allergic adverse reactions. We examined the possibility of candidate peptides for the development of peptide-based immunotherapy for Japanese cedar pollinosis. Methods: Twelve Cry j 1-specific T-cell lines were established from peripheral blood mononuclear cells (PBMC) of 12 patients with Japanese cedar pollinosis. Using these T-cell lines, 37 Cry j 1-derived overlapping peptides were assessed for their proliferative responses and cytokine production. Results: Four peptides corresponding to the Cry j 1 sequence were able to induce proliferative responses to more than one T-cell line: p61-80 (3/12; 25.0%); p115–132 (2/12; 16.6%); p206–225 (4/12; 33.3%); and p337–353 (5/12; 41.7%). Furthermore, T-cell lines generated from 11 of 12 donors (91.7%) responded to at least one of these four peptides. On the other hand, the pattern of cytokine production from Cry j 1-specific T-cell lines varied. Moreover, cytokine production patterns by stimulation with Cry j 1 peptide did not reflect those by stimulation with Cry j 1 protein. Conclusions: Our results suggest four Cry j 1-derived peptides (p61–80, p115–132, p206–225 and p337–353) may be considered to be the immunodominant T-cell epitopes of the Cry j 1 molecule, and can be useful for the design of peptide-based immunotherapy for the management of Japanese cedar pollinosis
    corecore