1,344 research outputs found
Spin reorientation transition in the incommensurate stripe-ordered phase of La3/2Sr1/2NiO4
The spin ordering of La3/2Sr1/2NiO4 was investigated by magnetization
measurements, and by unpolarized- and polarized-neutron diffraction. Spin
ordering with an incommensurability epsilon ~ 0.445 is observed below T_so ~ 80
K. On cooling, a spin reorientation is observed at 57 +/- 1 K, with the spin
axes rotating from 52 +/- 4 degrees to 78 +/- 3 degrees. This is the first time
a spin reorientation has been observed in a La2-xSrxNiO4+delta compound having
incommensurate stripe order.Comment: REVTex 4. 4 pages including 4 figures. Minor changes to text.
Accepted to be published in Physical Review
Magnetic excitations in coupled Haldane spin chains near the quantum critical point
Two quasi-1-dimensional S=1 quantum antiferromagnetic materials, PbNi2V2O8
and SrNi2V2O8, are studied by inelastic neutron scattering on powder samples.
While magnetic interactions in the two systems are found to be very similar,
subtle differences in inter-chain interaction strengths and magnetic anisotropy
are detected. The latter are shown to be responsible for qualitatively
different ground state properties: magnetic long-range order in SrNi2V2O8 and
disordered ``spin liquid'' Haldane-gap state in PbNi2V2O8.Comment: 15 figures, Figs. 5,9, and 10 in color. Some figures in JPEG format.
Complete PostScript and PDF available from
http://papillon.phy.bnl.gov/publicat.ht
Spin correlations among the charge carriers in an ordered stripe phase
We have observed a diffuse component to the low-energy magnetic excitation
spectrum of stripe-ordered La5/3Sr1/3NiO4 probed by neutron inelastic
scattering. The diffuse scattering forms a square pattern with sides parallel
and perpendicular to the stripe directions. The signal is dispersive, with a
maximum energy of ~10 meV. Probed at 2 meV the scattering decreases in strength
with increasing temperature, and is barely visible at 100 K. We argue that the
signal originates from dynamic, quasi- one-dimensional, antiferromagnetic
correlations among the stripe electrons.Comment: 4 pages, 4 figures. To be published in Physical Review Letter
NMR relaxation rate in the field-induced octupolar liquid phase of spin-1/2 J1-J2 frustrated chains
In the spin-1/2 frustrated chain with nearest-neighbor ferromagnetic exchange
J1 and next-nearest-neighbor antiferromagnetic exchange J2 under magnetic
field, magnetic multipolar-liquid (quadrupolar, octupolar, and hexadecapolar)
phases are widely expanded from the saturation down to a low-field regime.
Recently, we have clarified characteristic temperature and field dependence of
the NMR relaxation rate 1/T_1 in the quadrupolar phase. In this paper, we
examine those of 1/T_1 in the octupolar phase combining field theoretical
method with numerical data. The relevance of the results to quasi
one-dimensional J1-J2 magnets such as PbCuSO4(OH)2, Rb2Cu2Mo3O12 and Li2ZrCuO4
is shortly discussed.Comment: 6 pages (1 column), 3 figure
The critical behavior of frustrated spin models with noncollinear order
We study the critical behavior of frustrated spin models with noncollinear
order, including stacked triangular antiferromagnets and helimagnets. For this
purpose we compute the field-theoretic expansions at fixed dimension to six
loops and determine their large-order behavior. For the physically relevant
cases of two and three components, we show the existence of a new stable fixed
point that corresponds to the conjectured chiral universality class. This
contradicts previous three-loop field-theoretical results but is in agreement
with experiments.Comment: 4 pages, RevTe
Longitudinal magnon in the tetrahedral spin system Cu2Te2O5Br2 near quantum criticality
We present a comprehensive study of the coupled tetrahedra-compound
Cu2Te2O5Br2 by theory and experiments in external magnetic fields. We report
the observation of a longitudinal magnon in Raman scattering in the ordered
state close to quantum criticality. We show that the excited
tetrahedral-singlet sets the energy scale for the magnetic ordering temperature
T_N. This energy is determined experimentally. The ordering temperature T_N has
an inverse-log dependence on the coupling parameters near quantum criticality
Haldane-gap excitations in the low-H_c 1-dimensional quantum antiferromagnet NDMAP
Inelastic neutron scattering on deuterated single-crystal samples is used to
study Haldane-gap excitations in the new S=1 one-dimensional quantum
antiferromagnet NDMAP, that was recently recognized as an ideal model system
for high-field studies. The Haldane gap energies meV,
meV and meV, for excitations polarized along
the a, b, and c crystallographic axes, respectively, are directly measured. The
dispersion perpendicular to the chain axis c is studied, and extremely weak
inter-chain coupling constants meV and meV, along the a and b axes, respectively, are determined. The results
are discussed in the context of future experiments in high magnetic fields.Comment: 5 pages, 4 figures, submitted to Phys. Rev.
Coexistence of Haldane gap excitations and long range antiferromagnetic order in mixed-spin nickelates R_2 Ba Ni O_5
The spin dynamics of the S=1 Ni-chains in mixed-spin antiferromagnets Pr_2 Ba
Ni O_5 and Nd_x Y_2-x Ba Ni O_5 is described in terms of a simple
Ginzburg-Landau Lagrangian coupled to the sublattice of rare-earth ions. Within
this framework we obtain a theoretical explanation for the experimentally
observed coexistence of Haldane gap excitations and long-range magnetic order,
as well as for the increase of the Haldane gap energy below the Neel point. We
also predict that the degeneracy of the Haldane triplet is lifted in the
magnetically ordered phase. The theoretical results are consistent with the
available experimental data.Comment: 4 pages, 1 figure, submitted to PRL An alternative derivation of main
results and new references adde
Field-induced structural evolution in the spin-Peierls compound CuGeO: high-field ESR study
The dimerized-incommensurate phase transition in the spin-Peierls compound
CuGeO is probed using multifrequency high-resolution electron spin
resonance (ESR) technique, in magnetic fields up to 17 T. A field-induced
development of the soliton-like incommensurate superstructure is clearly
indicated as a pronounced increase of the ESR linewidth (magnon
excitations), with a at 13.8 T. The anomaly is
explained in terms of the magnon-soliton scattering, and suggests that the
soliton-like phase exists close to the boundary of the dimerized-incommensurate
phase transition. In addition, magnetic excitation spectra in 0.8% Si-doped
CuGeO are studied. Suppression of the anomaly observed in the
doped samples suggests a collapse of the long-range-ordered soliton states upon
doping, that is consistent with high-field neutron scattering experiments.Comment: Accepted to Phys. Rev.
- …