1,344 research outputs found

    Spin reorientation transition in the incommensurate stripe-ordered phase of La3/2Sr1/2NiO4

    Full text link
    The spin ordering of La3/2Sr1/2NiO4 was investigated by magnetization measurements, and by unpolarized- and polarized-neutron diffraction. Spin ordering with an incommensurability epsilon ~ 0.445 is observed below T_so ~ 80 K. On cooling, a spin reorientation is observed at 57 +/- 1 K, with the spin axes rotating from 52 +/- 4 degrees to 78 +/- 3 degrees. This is the first time a spin reorientation has been observed in a La2-xSrxNiO4+delta compound having incommensurate stripe order.Comment: REVTex 4. 4 pages including 4 figures. Minor changes to text. Accepted to be published in Physical Review

    Magnetic excitations in coupled Haldane spin chains near the quantum critical point

    Full text link
    Two quasi-1-dimensional S=1 quantum antiferromagnetic materials, PbNi2V2O8 and SrNi2V2O8, are studied by inelastic neutron scattering on powder samples. While magnetic interactions in the two systems are found to be very similar, subtle differences in inter-chain interaction strengths and magnetic anisotropy are detected. The latter are shown to be responsible for qualitatively different ground state properties: magnetic long-range order in SrNi2V2O8 and disordered ``spin liquid'' Haldane-gap state in PbNi2V2O8.Comment: 15 figures, Figs. 5,9, and 10 in color. Some figures in JPEG format. Complete PostScript and PDF available from http://papillon.phy.bnl.gov/publicat.ht

    Spin correlations among the charge carriers in an ordered stripe phase

    Full text link
    We have observed a diffuse component to the low-energy magnetic excitation spectrum of stripe-ordered La5/3Sr1/3NiO4 probed by neutron inelastic scattering. The diffuse scattering forms a square pattern with sides parallel and perpendicular to the stripe directions. The signal is dispersive, with a maximum energy of ~10 meV. Probed at 2 meV the scattering decreases in strength with increasing temperature, and is barely visible at 100 K. We argue that the signal originates from dynamic, quasi- one-dimensional, antiferromagnetic correlations among the stripe electrons.Comment: 4 pages, 4 figures. To be published in Physical Review Letter

    NMR relaxation rate in the field-induced octupolar liquid phase of spin-1/2 J1-J2 frustrated chains

    Full text link
    In the spin-1/2 frustrated chain with nearest-neighbor ferromagnetic exchange J1 and next-nearest-neighbor antiferromagnetic exchange J2 under magnetic field, magnetic multipolar-liquid (quadrupolar, octupolar, and hexadecapolar) phases are widely expanded from the saturation down to a low-field regime. Recently, we have clarified characteristic temperature and field dependence of the NMR relaxation rate 1/T_1 in the quadrupolar phase. In this paper, we examine those of 1/T_1 in the octupolar phase combining field theoretical method with numerical data. The relevance of the results to quasi one-dimensional J1-J2 magnets such as PbCuSO4(OH)2, Rb2Cu2Mo3O12 and Li2ZrCuO4 is shortly discussed.Comment: 6 pages (1 column), 3 figure

    The critical behavior of frustrated spin models with noncollinear order

    Full text link
    We study the critical behavior of frustrated spin models with noncollinear order, including stacked triangular antiferromagnets and helimagnets. For this purpose we compute the field-theoretic expansions at fixed dimension to six loops and determine their large-order behavior. For the physically relevant cases of two and three components, we show the existence of a new stable fixed point that corresponds to the conjectured chiral universality class. This contradicts previous three-loop field-theoretical results but is in agreement with experiments.Comment: 4 pages, RevTe

    Longitudinal magnon in the tetrahedral spin system Cu2Te2O5Br2 near quantum criticality

    Full text link
    We present a comprehensive study of the coupled tetrahedra-compound Cu2Te2O5Br2 by theory and experiments in external magnetic fields. We report the observation of a longitudinal magnon in Raman scattering in the ordered state close to quantum criticality. We show that the excited tetrahedral-singlet sets the energy scale for the magnetic ordering temperature T_N. This energy is determined experimentally. The ordering temperature T_N has an inverse-log dependence on the coupling parameters near quantum criticality

    Haldane-gap excitations in the low-H_c 1-dimensional quantum antiferromagnet NDMAP

    Full text link
    Inelastic neutron scattering on deuterated single-crystal samples is used to study Haldane-gap excitations in the new S=1 one-dimensional quantum antiferromagnet NDMAP, that was recently recognized as an ideal model system for high-field studies. The Haldane gap energies Δx=0.42\Delta_x=0.42 meV, Δy=0.52\Delta_y=0.52 meV and Δz=1.86\Delta_z=1.86 meV, for excitations polarized along the a, b, and c crystallographic axes, respectively, are directly measured. The dispersion perpendicular to the chain axis c is studied, and extremely weak inter-chain coupling constants Jy=1.8103J_y=1.8\cdot 10^{-3} meV and Jx=3.5104J_x=3.5\cdot 10^{-4} meV, along the a and b axes, respectively, are determined. The results are discussed in the context of future experiments in high magnetic fields.Comment: 5 pages, 4 figures, submitted to Phys. Rev.

    Coexistence of Haldane gap excitations and long range antiferromagnetic order in mixed-spin nickelates R_2 Ba Ni O_5

    Full text link
    The spin dynamics of the S=1 Ni-chains in mixed-spin antiferromagnets Pr_2 Ba Ni O_5 and Nd_x Y_2-x Ba Ni O_5 is described in terms of a simple Ginzburg-Landau Lagrangian coupled to the sublattice of rare-earth ions. Within this framework we obtain a theoretical explanation for the experimentally observed coexistence of Haldane gap excitations and long-range magnetic order, as well as for the increase of the Haldane gap energy below the Neel point. We also predict that the degeneracy of the Haldane triplet is lifted in the magnetically ordered phase. The theoretical results are consistent with the available experimental data.Comment: 4 pages, 1 figure, submitted to PRL An alternative derivation of main results and new references adde

    Field-induced structural evolution in the spin-Peierls compound CuGeO3_3: high-field ESR study

    Get PDF
    The dimerized-incommensurate phase transition in the spin-Peierls compound CuGeO3_3 is probed using multifrequency high-resolution electron spin resonance (ESR) technique, in magnetic fields up to 17 T. A field-induced development of the soliton-like incommensurate superstructure is clearly indicated as a pronounced increase of the ESR linewidth ΔB\Delta B (magnon excitations), with a ΔBmax\Delta B_{max} at BcB_{c}\sim 13.8 T. The anomaly is explained in terms of the magnon-soliton scattering, and suggests that the soliton-like phase exists close to the boundary of the dimerized-incommensurate phase transition. In addition, magnetic excitation spectra in 0.8% Si-doped CuGeO3_3 are studied. Suppression of the ΔB\Delta B anomaly observed in the doped samples suggests a collapse of the long-range-ordered soliton states upon doping, that is consistent with high-field neutron scattering experiments.Comment: Accepted to Phys. Rev.
    corecore