12 research outputs found

    Vascular Alterations in a Murine Model of Acute Graft-Versus-Host Disease Are Associated With Decreased Serum Levels of Adiponectin and an Increased Activity and Vascular Expression of Indoleamine 2,3-Dioxygenase

    Get PDF
    Graft-versus-host disease (GVHD) is the limiting complication after bone marrow transplantation (BMT), and its pathophysiology seems to be highly influenced by vascular factors. Our study aimed at elucidating possible mechanisms involved in vascular GVHD. For this purpose, we used a fully MHC-mismatched model of BALB/c mice conditioned according to two different intensity protocols with total body irradiation and transplantation of allogeneic (C57BL/6) or syngeneic bone marrow cells and splenocytes. Mesenteric resistance arteries were studied in a pressurized myograph. We also quantified the expression of indoleamine 2,3-dioxygenase (IDO), endothelial (eNOS), and inducible NO synthase (iNOS), as well as several pro-and anti-inflammatory cytokines. We measured the serum levels of tryptophan (trp) and kynurenine (kyn), the kyn/trp ratio (KTR) as a marker of IDO activity, and adiponectin (APN). The myographic study showed a correlation of GVHD severity after allogeneic BMT with functional vessel alterations that started with increased vessel stress and ended in eccentric vessel remodeling, increased vessel strain, and endothelial dysfunction. These alterations were accompanied by increasing IDO activity and decreasing APN levels in the serum of allogeneic animals. The mRNA expression showed significantly elevated IDO, decreased eNOS, and elevation of most studied pro-and anti-inflammatory cytokines. Our study provides further data supporting the importance of vessel alterations in GVHD and is the first to show an association of vascular GVHD with hypoadiponectinemia and an increased activity and vascular expression of IDO. Whether there is also a causative involvement of these two factors in the development of GVHD needs to be further investigated

    Complement Regulator FHR-3 Is Elevated either Locally or Systemically in a Selection of Autoimmune Diseases

    Get PDF
    Acute kidney injury (AKI) is a very common complication after allogeneic bone marrow transplantation (BMT) and is associated with a poor prognosis. Generally, the kidneys are assumed to not be no direct targets of graft-versus-host disease (GvHD), and renal impairment is often attributed to several other factors occurring in the early phase after BMT. Our study aimed to prove the existence of renal GvHD in a fully major histocompatibility complex (MHC)-mismatched model of BALB/c mice conditioned and transplanted according to 2 different intensity protocols. Syngeneically transplanted and untreated animals served as controls. Four weeks after transplantation, allogeneic animals developed acute GvHD that was more pronounced in the high-intensity protocol (HIP) group than in the low-intensity protocol (LIP) group. Urea and creatinine as classic serum markers of renal function could not verify renal impairment 4 weeks after BMT. Creatinine levels were even reduced as a result of catabolic metabolism and loss of muscle mass due to acute GvHD. Proteinuria, albuminuria, and urinary N-acetyl-beta-D-glucosaminidase (NAG) levels were measured as additional renal markers before and after transplantation. Albuminuria and NAG were only significantly increased after allogeneic transplantation, correlating with disease severity between HIP and LIP animals. Histological investigations of the kidneys showed renal infiltration of T cells and macrophages with endarteriitis, interstitial nephritis, tubulitis, and glomerulitis. T cells consisted of CD4+, CD8+, and FoxP3+ cells. Renal expression analysis of allogeneic animals showed increases in indoleamine-2,3 dioxygenase (IDO), different cytokines (tumor necrosis factor alpha, interferon-gamma, interleukin 1 alpha [IL-1 alpha], IL-2, IL-6, and IL-10), and adhesion molecules (intercellular adhesion molecule 1 and vascular cell adhesion molecule 1), resembling findings from other tissues in acute GvHD. In summary, our study supports the entity of renal GvHD with histological features suggestive of cellmediated renal injury. Albuminuria and urinary NAG levels may serve as early markers of renal impairment

    Eplerenone prevents salt-induced vascular stiffness in Zucker diabetic fatty rats: a preliminary report

    Get PDF
    Background Aldosterone levels are elevated in a rat model of type 2 diabetes mellitus, the Zucker Diabetic fatty rat (ZDF). Moreover blood pressure in ZDF rats is salt-sensitive. The aim of this study was to examine the effect of the aldosterone antagonist eplerenone on structural and mechanical properties of resistance arteries of ZDF-rats on normal and high-salt diet. Methods After the development of diabetes, ZDF animals were fed either a normal salt diet (0.28%) or a high-salt diet (5.5%) starting at an age of 15 weeks. ZDF rats on high-salt diet were randomly assigned to eplerenone (100 mg/kg per day, in food) (ZDF+S+E), hydralazine (25 mg/kg per day) (ZDF+S+H), or no treatment (ZDF+S). Rats on normal salt-diet were assigned to eplerenone (ZDF+E) or no treatment (ZDF). Normoglycemic Zucker lean rats were also divided into two groups receiving normal (ZL) or high-salt diet (ZL+S) serving as controls. Systolic blood pressure was measured by tail cuff method. The experiment was terminated at an age of 25 weeks. Mesenteric resistance arteries were studied on a pressurized myograph. Specifically, vascular hypertrophy (media-to-lumen ratio) and vascular stiffness (strain and stress) were analyzed. After pressurized fixation histological analysis of collagen and elastin content was performed. Results Blood pressure was significantly higher in salt-loaded ZDF compared to ZDF. Eplerenone and hydralazine prevented this rise similarily, however, significance niveau was missed. Media-to-lumen ratio of mesenteric resistance arteries was significantly increased in ZDF+S when compared to ZDF and ZL. Both, eplerenone and hydralazine prevented salt-induced vascular hypertrophy. The strain curve of arteries of salt-loaded ZDF rats was significantly lower when compared to ZL and when compared to ZDF+S+E, but was not different compared to ZDF+S+H. Eplerenone, but not hydralazine shifted the strain-stress curve to the right indicating a vascular wall composition with less resistant components. This indicates increased vascular stiffness in salt-loaded ZDF rats, which could be prevented by eplerenone but not by hydralazine. Collagen content was increased in ZL and ZDF rats on high-salt diet. Eplerenone and hydralazine prevented the increase of collagen content. There was no difference in elastin content. Conclusion Eplerenone and hydralazine prevented increased media-to-lumen ratio in salt-loaded ZDF-rats, indicating a regression of vascular hypertrophy, which is likely mediated by the blood pressure lowering-effect. Eplerenone has additionally the potential to prevent increased vascular stiffness in salt-loaded ZDF-rats. This suggests an effect of the specific aldosterone antagonist on adverse vascular wall remodelling

    Antidiabetic treatment restores adiponectin serum levels and APPL1 expression, but does not improve adiponectin-induced vasodilation and endothelial dysfunction in Zucker diabetic fatty rats

    Get PDF
    Background Adiponectin is able to induce NO-dependent vasodilation in Zucker lean (ZL) rats, but this effect is clearly alleviated in their diabetic littermates, the Zucker diabetic fatty (ZDF) rats. ZDF rats also exhibit hypoadiponectinemia and a suppressed expression of APPL1, an adaptor protein of the adiponectin receptors, in mesenteric resistance arteries. Whether an antidiabetic treatment can restore the vasodilatory effect of adiponectin and improve endothelial function in diabetes mellitus type 2 is not known. Methods During our animal experiment from week 11 to 22 in each case seven ZDF rats received an antidiabetic treatment with either insulin (ZDF+I) or metformin (ZDF+M). Six normoglycemic ZL and six untreated ZDF rats served as controls. Blood glucose was measured at least weekly and serum adiponectin levels were quantified via ELISA in week 11 and 22. The direct vasodilatory response of their isolated mesenteric resistance arteries to adiponectin as well as the endothelium-dependent and -independent function was evaluated in a small vessel myograph. Additionally, the expression of different components of the adiponectin signaling pathway in the resistance arteries was quantified by real-time RT-PCR. Results In ZDF rats a sufficient blood glucose control could only be reached by treatment with insulin, but both treatments restored the serum levels of adiponectin and the expression of APPL1 in small resistance arteries. Nevertheless, both therapies were not able to improve the vasodilatory response to adiponectin as well as endothelial function in ZDF rats. Concurrently, a downregulation of the adiponectin receptors 1 and 2 as well as endothelial NO-synthase expression was detected in insulin-treated ZDF rats. Metformin-treated ZDF rats showed a reduced expression of adiponectin receptor 2. Conclusions An antidiabetic treatment with either insulin or metformin in ZDF rats inhibits the development of hypoadiponectinemia and downregulation of APPL1 in mesenteric resistance arteries, but is not able to improve adiponectin induced vasodilation and endothelial dysfunction. This is possibly due to alterations in the expression of adiponectin receptors and eNOS

    Expression of fourteen novel obesity-related genes in zucker diabetic fatty rats

    No full text
    Abstract Background Genome-wide association studies (GWAS) are useful to reveal an association between single nucleotide polymorphisms and different measures of obesity. A multitude of new loci has recently been reported, but the exact function of most of the according genes is not known. The aim of our study was to start elucidating the function of some of these genes. Methods We performed an expression analysis of fourteen genes, namely BDNF, ETV5, FAIM2, FTO, GNPDA2, KCTD15, LYPLAL1, MCR4, MTCH2, NEGR1, NRXN3, TMEM18, SEC16B and TFAP2B, via real-time RT-PCR in adipose tissue of the kidney capsule, the mesenterium and subcutaneum as well as the hypothalamus of obese Zucker diabetic fatty (ZDF) and Zucker lean (ZL) rats at an age of 22 weeks. Results All of our target genes except for SEC16B showed the highest expression in the hypothalamus. This suggests a critical role of these obesity-related genes in the central regulation of energy balance. Interestingly, the expression pattern in the hypothalamus showed no differences between obese ZDF and lean ZL rats. However, LYPLAL1, TFAP2B, SEC16B and FAIM2 were significantly lower expressed in the kidney fat of ZDF than ZL rats. NEGR1 was even lower expressed in subcutaneous and mesenterial fat, while MTCH2 was higher expressed in the subcutaneous and mesenterial fat of ZDF rats. Conclusion The expression pattern of the investigated obesity genes implies for most of them a role in the central regulation of energy balance, but for some also a role in the adipose tissue itself. For the development of the ZDF phenotype peripheral rather than central mechanisms of the investigated genes seem to be relevant.</p

    Drug Coated Balloon Is Less Effective for Treatment of DES In-Stent Restenosis Both in Native Coronary Arteries and Saphenous Vein Grafts: Results From a Bicenter Registry

    No full text
    BackgroundThe paclitaxel drug coated balloon (DCB) is an established treatment for bare metal stent (BMS) in-stent restenosis (ISR) in native coronary arteries. The evidence of DCB-application for drug eluting stent (DES) ISR both in native coronaries and saphenous vein grafts (SVG) is limited. Aim of our study was to compare the differential efficacy of DCB for treatment of BMS- and DES-ISR in native coronary vessels and SVGs. Methods and ResultsN=135 DCB-treated patients with available follow up (FU) angiography were included in this retrospective study. Patients received treatment between April 2009 and March 2013 at 2 tertiary care hospitals in Germany. DCB was applied in BMS-ISR (n=65; 48%) and DES-ISR (n=70; 52%). DCB-treated lesions were located in native coronary arteries (n=110; 81%; BMS-ISR: n=58; 53%; DES-ISR: n=52; 47%) and SVGs (n=25; 19%; BMS-ISR: n=7, 28%; DES-ISR: n=18, 72%). Median FU was 12 months. Endpoints were binary restenosis and target lesion revascularization (TLR). Binary restenosis (29% vs. 57%; P<0.01) and TLR (18% vs. 46%; P<0.01) were significantly more frequent in DES-ISR versus BMS-ISR. In SVGs, TLR was required in 72% (DES-ISR) versus 14% (BMS-ISR); P=0.02. In the Kaplan-Meier-analysis freedom from both endpoints was significantly decreased in the DES-lesions both in the total population (binary restenosis P<0.01; TLR P<0.01) and native coronaries (binary restenosis P=0.02; TLR P=0.04). ConclusionsDCB treatment is less effective in DES-ISR than in BMS-ISR. The diminished efficacy of DCB treatment is even more pronounced in DES-ISR located within degenerated SVGs
    corecore