34 research outputs found

    Layout Optimization of LNG-Liquefaction Process on LNG-FPSO Preventing Domino Effects

    No full text

    Integration of CCS, emissions trading and volatilities of fuel prices into sustainable energy planning, and its robust optimization

    No full text
    In this paper, a new approach has been proposed that allows a robust optimization of sustainable energy planning over a period of years. It is based on the modified energy flow optimization model (EFOM) and minimizes total costs in planning capacities of power plants and CCS to be added, stripped or retrofitted. In the process, it reduces risks due to a high volatility in fuel prices; it also provides robustness against infeasibility with respect to meeting the required emission level by adopting a penalty constant that corresponds to the price level of emission allowances. In this manner, the proposed methodology enables decision makers to determine the optimal capacities of power plants and/or CCS, as well as volumes of emissions trading in the future that will meet the required emission level and satisfy energy demand from various user-sections with minimum costs and maximum robustness. They can also gain valuable insights on the effects that the price of emission allowances has on the competitiveness of RES and CCS technologies; it may be used in, for example, setting appropriate subsidies and tax policies for promoting greater use of these technologies. The proposed methodology is applied to a case based on directions and volumes of energy flows in South Korea during the year 2008.Energy planning Renewable energy Carbon capture and storage Robust optimization Uncertain environment

    Safety analysis using an expert system in chemical processes

    No full text

    Multiple-Fault Diagnosis Based on System Decomposition and Dynamic PLS

    No full text

    Economic evaluation of renewable energy systems under varying scenarios and its implications to Korea's renewable energy plan

    No full text
    This paper studies economics of renewable energy systems with consideration of future prospects on costs and uncertain external conditions that may affect competitiveness in the power plant market. The concept of learning curve is adopted to compute estimates on the costs of installing and operating renewable energy systems in the future; fuel costs and carbon price are modeled as scenario-dependent variables to analyze their impact on total costs under different scenarios. The proposed approach allows evaluation and comparison of total costs necessary in implementing renewable energy plans under varying technological, and/or economical conditions that face uncertainty at present. Moreover, analyzing the evaluation results further with techniques like sensitivity analysis can identify factors central to reducing the total costs. As an illustrative case-study, the Korean government's renewable energy plan has been evaluated accordingly, under three different scenarios defined by International Energy Agency (IEA). The evaluation results indicate minor changes in total costs of achieving the plan among three scenarios, mainly due to counterbalancing between the price of fossil fuels and carbon price. Further analyses revealed factors central to lowering the total costs necessary in implementing the plan--hybridization between renewable energy systems, reduction of biomass production costs via technological innovation, increasing learning rates by focusing on R&D and international cooperation.Economic evaluation Energy policy Learning effect Renewable energy South Korea
    corecore