1,284 research outputs found

    Effect of Earth's rotation on the trajectories of free-fall bodies in Equivalence Principle Experiment

    Get PDF
    Owing to Earth's rotation a free-fall body would move in an elliptical orbit rather than along a straight line forward to the center of the Earth. In this paper on the basis of the theory for spin-spin coupling between macroscopic rotating bodies we study violation of the equivalence principle from long-distance free-fall experiments by means of a rotating ball and a non-rotating sell. For the free-fall time of 40 seconds, the difference between the orbits of the two free-fall bodies is of the order of 10^{-9}cm which could be detected by a SQUID magnetometer owing to such a magnetometer can be used to measure displacements as small as 10^{-13} centimeters.Comment: 6 pages, 4 figure

    Evolutionary Consequences of Dusty Tori in Active Galactic Nuclei

    Full text link
    Deep surveys of {\em Chandra} and {\em HST} (Hubble Space Telescope) show that active galactic nucleus (AGN) populations are changing with hard X-ray luminosities. This arises an interesting question whether the dusty torus is evolving with the central engines. We assemble a sample of 50 radio-quiet PG quasars to tackle this problem. The covering factors of the dusty tori can be estimated from the multiwavelength continuum. We find they are strongly correlated with the hard X-ray luminosity. Interestingly this correlation agrees with the fraction of type II AGNs discovered by {\em Chandra} and {\em HST}, implying strong evidence for that the AGN population changing results from the evolution of the tori. We also find that the frequencies of the dips around 1ÎĽ\mum in the continuum correlate with the covering factors in the present sample, indicating the dip frequencies are adjusted by the covering factors. In the scenario of fueling black hole from the torus, the covering factor is a good and the dip frequency is a potential indicator of the torus evolution.Comment: 4 pages in emulateapj5.sty. Accepted by ApJ Letter

    Enhancement of baryon-to-meson ratios around jets as a signature of medium response

    Full text link
    We present a unique signal of jet-induced medium excitations: the enhancement of baryon-to-meson ratios around the quenched jets. To illustrate this, we study jet-particle correlations and the distributions of jet-induced identified particles with respect to the jet direction in Pb+Pb collisions at the LHC via a multi-phase transport model. We find a strong enhancement of baryon-to-meson ratios for associated particles at intermediate transverse momentum around the triggered jets in Pb+Pb collisions relative to p+p collisions, due to the coalescence of jet-excited medium partons. Since the lost energy from jets can diffuse to large angles, such baryon-to-meson-ratio enhancement is more pronounced for larger relative distance from the jet axis. We argue that the experimental confirmation of the enhancement of jet-induced baryon-to-meson ratios around the jets will provide an unambiguous evidence for the medium response to jet quenching in heavy-ion collisions.Comment: 6 pages, 3 figure
    • …
    corecore