47 research outputs found
Computational identification of regulatory features affecting splicing in the human brain
RNA splicing has enabled a dramatic increase in species complexity. Splicing occurs in over 95% of mam- malian genes allowing the development of exceptional cellular diversity without an increase in raw gene numbers. This is highlighted by the fact that human and nematodes have the same number of genes (20,000 human genes versus 19,000 genes in Caenorhabditis elegans). Although the mechanistic process of splicing is now well understood there remains a multitude of unexplored dynamics that have only become visible with the power of next generation sequencing (NGS). The human brain is one of the best examples of an intricate cellular structure. Neuronal cell types are incredibly diverse and specialised, regulated through various transcriptional mechanisms. Recently, long genes (150kb+) have been implicated as crucial to neuronal function and their impairment has been attributed to several neurological disorders. I explore this relationship further by showing that long genes are more highly expressed in the brain than other tissues. Long genes are also distinct in that they are deficient in H3k36me3, a histone mark largely associated with splicing and active transcription. Through analysis of brain RNA-seq data, a novel splicing mechanism known as recursive splicing was identified in long introns. Recursive splice sites (RSS) consist of an intronic 3’splice site followed immediately by a 5’ splice site. These sites result in a zero-length exon that regulates the use of cryptic promoters ensuring only the functional isoform is expressed. This discovery lead me to question if other non-canonical forms of splicing are common in the brain. Backsplicing is a recently discovered splicing mechanism pervasive in the tree of life. This occurs when a 3’ end of a downstream exon is spliced onto the 5’ end of an upstream exon resulting in a circular RNA molecule (hereafter: circRNA). circRNA are enriched in neuronal genes and mediated by RNA binding factors. I have identified and quantified the presence of circRNA within the brain, identifying a large number of highly expressed novel circRNA. From these findings I identify a subset of highly expressed backsplice junctions that occur between two proximal genes from the same family. vii In order to understand the function of these splicing reactions I inspected the splicing features themselves, namely; the 5’ and 3’ splice sites and the branchpoint. The branchpoint remains a poorly char- acterised feature and until recently very few have been experimentally validated. I explore these features through the ExAC and UCLex consortia, using cumulative variant ratios to annotate invariant positions within the branchpoint and splice sites. By identifying invariant positions I could then investigate how vari- ation impacts splicing efficiency by integrating whole exome and RNA sequence data from the GEUVADIS consortium. Findings show that exon expression is a poor indicator of splicing dysfunction, showing a three fold lower sensitivity than direct analysis of splice junction reads. I also devise a variant effect score that captures a significant portion of change in splice site efficiency enabling improved prediction of deleterious variants. Together, this thesis hints at the massive potential of NGS to investigate the diversity of splicing related features while identifying novel features that could be implicated in neurological dysfunction
Astrovirus VA1/HMO-C: An Increasingly Recognized Neurotropic Pathogen in Immunocompromised Patients.
An 18-month-old boy developed encephalopathy, for which extensive investigation failed to identify an etiology, 6 weeks after stem cell transplant. To exclude a potential infectious cause, we performed high-throughput RNA sequencing on brain biopsy
Purinergic Receptor Functionality Is Necessary for Infection of Human Hepatocytes by Hepatitis Delta Virus and Hepatitis B Virus
Hepatitis B virus (HBV) and hepatitis delta virus (HDV) are major sources of acute and chronic hepatitis. HDV requires the envelope proteins of HBV for the processes of assembly and infection of new cells. Both viruses are able to infect hepatocytes though previous studies have failed to determine the mechanism of entry into such cells. This study began with evidence that suramin, a symmetrical hexasulfated napthylurea, could block HDV entry into primary human hepatocytes (PHH) and was then extrapolated to incorporate findings of others that suramin is one of many compounds that can block activation of purinergic receptors. Thus other inhibitors, pyridoxal-phosphate-6-azophenyl-2′,4′-disulfonate (PPADS) and brilliant blue G (BBG), both structurally unrelated to suramin, were tested and found to inhibit HDV and HBV infections of PHH. BBG, unlike suramin and PPADS, is known to be more specific for just one purinergic receptor, P2X7. These studies provide the first evidence that purinergic receptor functionality is necessary for virus entry. Furthermore, since P2X7 activation is known to be a major component of inflammatory responses, it is proposed that HDV and HBV attachment to susceptible cells, might also contribute to inflammation in the liver, that is, hepatitis
Prostate cancer risk related to foods, food groups, macronutrients and micronutrients derived from the UK Dietary Cohort Consortium food diaries.
BACKGROUND/OBJECTIVES: The influence of dietary factors remains controversial for screen-detected prostate cancer and inconclusive for clinically detected disease. We aimed to examine these associations using prospectively collected food diaries. SUBJECTS/METHODS: A total of 1,717 prostate cancer cases in middle-aged and older UK men were pooled from four prospective cohorts with clinically detected disease (n=663), with routine data follow-up (means 6.6-13.3 years) and a case-control study with screen-detected disease (n=1054), nested in a randomised trial of prostate cancer treatments (ISCTRN 20141297). Multiple-day food diaries (records) completed by men prior to diagnosis were used to estimate intakes of 37 selected nutrients, food groups and items, including carbohydrate, fat, protein, dairy products, fish, meat, fruit and vegetables, energy, fibre, alcohol, lycopene and selenium. Cases were matched on age and diary date to at least one control within study (n=3528). Prostate cancer risk was calculated, using conditional logistic regression (adjusted for baseline covariates) and expressed as odds ratios in each quintile of intake (±95% confidence intervals). Prostate cancer risk was also investigated by localised or advanced stage and by cancer detection method. RESULTS: There were no strong associations between prostate cancer risk and 37 dietary factors. CONCLUSIONS: Prostate cancer risk, including by disease stage, was not strongly associated with dietary factors measured by food diaries in middle-aged and older UK men.Medical Research Council (Grant ID: MC_UU_12019/1), Medical Research Council Population Health Sciences Research Network, British Heart Foundation, Cancer Research UK (Grant ID: C8221/A19170), Department of Health, Food Standards Agency, Stroke Association, WCRF, National Institute for Health Research Health Technology Assessment Programme (Project IDs: 96/20/06, 96/20/99), National Cancer Research Institute (formed by Cancer Research UK, Medical Research Council, Department of Health)This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/ejcn.2016.16
Lectin-Dependent Enhancement of Ebola Virus Infection via Soluble and Transmembrane C-type Lectin Receptors
Mannose-binding lectin (MBL) is a key soluble effector of the innate immune system that recognizes pathogen-specific surface glycans. Surprisingly, low-producing MBL genetic variants that may predispose children and immunocompromised individuals to infectious diseases are more common than would be expected in human populations. Since certain immune defense molecules, such as immunoglobulins, can be exploited by invasive pathogens, we hypothesized that MBL might also enhance infections in some circumstances. Consequently, the low and intermediate MBL levels commonly found in human populations might be the result of balancing selection. Using model infection systems with pseudotyped and authentic glycosylated viruses, we demonstrated that MBL indeed enhances infection of Ebola, Hendra, Nipah and West Nile viruses in low complement conditions. Mechanistic studies with Ebola virus (EBOV) glycoprotein pseudotyped lentiviruses confirmed that MBL binds to N-linked glycan epitopes on viral surfaces in a specific manner via the MBL carbohydrate recognition domain, which is necessary for enhanced infection. MBL mediates lipid-raft-dependent macropinocytosis of EBOV via a pathway that appears to require less actin or early endosomal processing compared with the filovirus canonical endocytic pathway. Using a validated RNA interference screen, we identified C1QBP (gC1qR) as a candidate surface receptor that mediates MBL-dependent enhancement of EBOV infection. We also identified dectin-2 (CLEC6A) as a potentially novel candidate attachment factor for EBOV. Our findings support the concept of an innate immune haplotype that represents critical interactions between MBL and complement component C4 genes and that may modify susceptibility or resistance to certain glycosylated pathogens. Therefore, higher levels of native or exogenous MBL could be deleterious in the setting of relative hypocomplementemia which can occur genetically or because of immunodepletion during active infections. Our findings confirm our hypothesis that the pressure of infectious diseases may have contributed in part to evolutionary selection of MBL mutant haplotypes