3 research outputs found

    Net ecosystem exchange of CO2 with rapidly changing high Arctic landscapes

    No full text
    High Arctic landscapes are expansive and changing rapidly. However, our understanding of their functional responses and potential to mitigate or enhance anthropogenic climate change is limited by few measurements. We collected eddy covariance measurements to quantify the net ecosystem exchange (NEE) of CO2 with polar semidesert and meadow wetland landscapes at the highest latitude location measured to date (82°N). We coupled these rare data with ground and satellite vegetation production measurements (Normalized Difference Vegetation In

    The role of terrestrial vegetation in atmospheric Hg deposition: Pools and fluxes of spike and ambient Hg from the METAALICUS experiment

    No full text
    As part of the Mercury Experiment to Assess Atmospheric Loading in Canada and the U.S. (METAALICUS), different stable Hg(II) isotope spikes were applied to the upland and wetland areas of a boreal catchment between 2001 and 2006 to examine retention of newly deposited Hg(II). In the present study, a Geographical Information Systems (GIS)-based approach was used to quantify canopy and ground vegetation pools of experimentally applied upland and wetland spike Hg within the METAALICUS watershed over the terrestrial loading phase of the experiment. A chemical kinetic model was also used to describe the changes in spike Hg concentrations of canopy and ground vegetation over time. An examination of the fate of spike Hg initially present on canopy vegetation using a mass balance approach indicated that the largest percentage flux from the canopy over one year post-spray was emission to the atmosphere (upland: 45%; wetland: 71%), followed by litterfall (upland: 14%; wetland: 10%) and throughfall fluxes (upland: 12%; wetland: 9%) and longer term retention of spike in the forest canopy (11% for both upland and wetland). Average half-lives (t 1/2) of spike on deciduous (110 30days) and coniferous (180 40days) canopy and ground vegetation (890 620days) indicated that retention of new atmospheric Hg(II

    Atmospheric Concentrations and Wet/Dry Loadings of Mercury at the Remote Experimental Lakes Area, Northwestern Ontario, Canada

    No full text
    Mercury (Hg) is a global pollutant released from both natural and human sources. Here we compare long-term records of wet deposition loadings of total Hg (THg) in the open to dry deposition loadings of THg in throughfall and litterfall under four boreal mixedwood canopy types at the remote Experimental Lakes Area (ELA) in Northwestern Ontario, Canada. We also present long-term records of atmospheric concentrations of gaseous elemental (GEM), gaseous oxidized (GOM), and particle bound (PBM) Hg measured at the ELA. We show that dry THg loadings in throughfall and litterfall are 2.7 to 6.1 times greater than wet THg loadings in the open. GEM concentrations showed distinct monthly and daily patterns, correlating positively in spring and summer with rates of gross ecosystem productivity and respiration. GOM and PBM concentrations were less variable throughout the year but were highest in the winter, when concentrations of anthropogenically sourced particles and gases were also high. Forest fires, Arctic air masses, and road salt also impacted GEM, GOM, and PBM concentrations at the ELA. A nested GEOS-Chem simulation for the ELA region produced a dry/wet deposition ratio of >5, suggesting that the importance of dry deposition in forested regions can be reasonably modeled by existing schemes for trace gases
    corecore