2 research outputs found

    Precipitation of Hemicelluloses from DMSO/Water Mixtures Using Carbon Dioxide as an Antisolvent

    Get PDF
    Supercritical antisolvent precipitation is a relatively recent technology which can be used for controlled preparation of polymer particles from solutions. This is done by the addition of an antisolvent to a polymer solution causing supersaturation of the polymer, especially under supercritical conditions. The particle size of the precipitates can be adjusted mainly by the rate of supersaturation. Spherical xylan or mannan particles having a narrow particle size distribution were precipitated from hemicellulose solutions in dimethyl-sulfoxide (DMSO) or DMSO/water mixtures by carbon dioxide as an antisolvent. By depending on the type of hemicellulose, the DMSO/H2O ratio, and the precipitation conditions such as pressure and temperature, the resulting particle size can be adjusted within a wide range from less than 0.1 to more than 5 m. Nano- and microstructured native xylans and mannans as obtained can be used in many applications such as encapsulation of active compounds, slow release agents, or chromatographic separation materials

    Ultralight-Weight Cellulose Aerogels from NBnMO-Stabilized Lyocell Dopes

    Get PDF
    Cellulose aerogels are intriguing new materials produced by supercritical drying of regenerated cellulose obtained by solvent exchange of solid Lyocell moldings. From N-methylmorpholine-N-oxide solutions with cellulose contents between 1 and 12%, dimensionally stable cellulose bodies are produced, in which the solution structure of the cellulose is largely preserved and transferred into the solid state. The specific density and surface of the obtained aerogels range from 0.05 to 0.26 g/cm3 and from 172 to 284 m2/g, respectively, depending on the cellulose content of the Lyocell dopes and regeneration procedure. A reliable extraction and drying procedure using supercritical carbon dioxide, the advantageous use of NBnMO as stabilizer for the Lyocell dopes, and selected physical properties of the materials is communicated
    corecore