28 research outputs found

    Translational potential of long-term decreases in mitochondrial lipids in a mouse model of Gulf War Illness

    Get PDF
    Gulf War Illness (GWI) affects 25% of veterans from the 1990ā€“1991 Gulf War (GW) and is accompanied by damage to the brain regions involved in memory processing. After twenty-five years, the chronic pathobiology of GWI is still unexplained. To address this problem, we examined the long-term consequences of GW exposures in an established GWI mouse model to identify biological processes that are relevant to the chronic symptoms of GWI. Three-month old male C57BL6 mice were exposed for 10 days to GW agents (pyridostigmine bromide and permethrin). Barnes Maze testing conducted at 15- and 16-months post-exposure revealed learning and memory impairment. Immunohistochemical analyses showed astroglia and microglia activation in the hippocampi of exposed mice. Proteomic studies identified perturbation of mitochondria function and metabolomics data showed decreases in the Krebs cycle compounds, lactate, Ī²-hydroxybutyrate and glycerol-3 phosphate in the brains of exposed mice. Lipidomics data showed decreases in fatty acids, acylcarnitines and phospholipids, including cardiolipins in the brains of exposed mice. Pilot biomarker studies showed that plasma from exposed mice and veterans with GWI had increases in odd-chain, and decreases in long-chain, acylcarnitines compared to their respective controls. Very long-chain acylcarnitines were decreased in veterans with GWI compared to controls. These studies suggest that mitochondrial lipid disturbances might be associated with GWI and that further investigation is required to determine its role in the pathophysiology of this illness. Targeting mitochondrial function may provide effective therapies for GWI, and that lipid abnormalities could serve as biomarkers of GWI

    Relative resistance of HIV-1 founder viruses to control by interferon-alpha

    Get PDF
    Background: Following mucosal human immunodeficiency virus type 1 (HIV-1) transmission, type 1 interferons (IFNs) are rapidly induced at sites of initial virus replication in the mucosa and draining lymph nodes. However, the role played by IFN-stimulated antiviral activity in restricting HIV-1 replication during the initial stages of infection is not clear. We hypothesized that if type 1 IFNs exert selective pressure on HIV-1 replication in the earliest stages of infection, the founder viruses that succeed in establishing systemic infection would be more IFN-resistant than viruses replicating during chronic infection, when type 1 IFNs are produced at much lower levels. To address this hypothesis, the relative resistance of virus isolates derived from HIV-1-infected individuals during acute and chronic infection to control by type 1 IFNs was analysed. Results: The replication of plasma virus isolates generated from subjects acutely infected with HIV-1 and molecularly cloned founder HIV-1 strains could be reduced but not fully suppressed by type 1 IFNs in vitro. The mean IC50 value for IFNĪ±2 (22 U/ml) was lower than that for IFNĪ² (346 U/ml), although at maximally-inhibitory concentrations both IFN subtypes inhibited virus replication to similar extents. Individual virus isolates exhibited differential susceptibility to inhibition by IFNĪ±2 and IFNĪ², likely reflecting variation in resistance to differentially up-regulated IFN-stimulated genes. Virus isolates from subjects acutely infected with HIV-1 were significantly more resistant to in vitro control by IFNĪ± than virus isolates generated from the same individuals during chronic, asymptomatic infection. Viral IFN resistance declined rapidly after the acute phase of infection: in five subjects, viruses derived from six-month consensus molecular clones were significantly more sensitive to the antiviral effects of IFNs than the corresponding founder viruses. Conclusions: The establishment of systemic HIV-1 infection by relatively IFNĪ±-resistant founder viruses lends strong support to the hypothesis that IFNĪ± plays an important role in the control of HIV-1 replication during the earliest stages of infection, prior to systemic viral spread. These findings suggest that it may be possible to harness the antiviral activity of type 1 IFNs in prophylactic and potentially also therapeutic strategies to combat HIV-1 infection

    Ensuring smoothly navigable approximation sets by BĆ©zier curve parameterizations in evolutionary bi-objective optimization

    No full text
    The aim of bi-objective optimization is to obtain an approximation set of (near) Pareto optimal solutions. A decision maker then navigates this set to select a final desired solution, often using a visualization of the approximation front. The front provides a navigational ordering of solutions to traverse, but this ordering does not necessarily map to a smooth trajectory through decision space. This forces the decision maker to inspect the decision variables of each solution individually, potentially making navigation of the approximation set unintuitive. In this work, we aim to improve approximation set navigability by enforcing a form of smoothness or continuity between solutions in terms of their decision variables. Imposing smoothness as a restriction upon common domination-based multi-objective evolutionary algorithms is not straightforward. Therefore, we use the recently introduced uncrowded hypervolume (UHV) to reformulate the multi-objective optimization problem as a single-objective problem in which parameterized approximation sets are directly optimized. We study here the case of parameterizing approximation sets as smooth BĆ©zier curves in decision space. We approach the resulting single-objective problem with the gene-pool optimal mixing evolutionary algorithm (GOMEA), and we call the resulting algorithm BezEA. We analyze the behavior of BezEA and compare it to optimization of the UHV with GOMEA as well as the domination-based multi-objective GOMEA. We show that high-quality approximation sets can be obtained with BezEA, sometimes even outperforming the domination- and UHV-based algorithms, while smoothness of the navigation trajectory through decision space is guaranteed

    Robust evolutionary bi-objective optimization for prostate cancer treatment with high-dose-rate brachytherapy

    No full text
    We address the real-world problem of automating the design of high-quality prostate cancer treatment plans in case of high-dose-rate brachytherapy, a form of internal radiotherapy. For this, recently a bi-objective real-valued problem formulation was introduced. With a GPU parallelization of the Multi-Objective Real-Valued Gene-pool Optimal Mixing Evolutionary Algorithm (MO-RV-GOMEA), good treatment plans were found in clinically acceptable running times. However, optimizing a treatment plan and delivering it to the patient in practice is a two-stage decision process and involves a number of uncertainties. Firstly, there is uncertainty in the identified organ boundaries due to the limited resolution of the medical images. Secondly, the treatment involves placing catheters inside the patient, which always end up (slightly) different from what was optimized. An important factor is therefore the robustness of the final treatment plan to these uncertainties. In this work, we show how we can extend the evolutionary optimization approach to find robust plans using multiple scenarios without linearly increasing the amount of required computation effort, as well as how to deal with these uncertainties efficiently when taking into account the sequential decision-making moments. The performance is tested on three real-world patient cases. We find that MO-RV-GOMEA is equally well capable of solving the more complex robust problem formulation, resulting in a more realistic reflection of the treatment plan qualities

    Selective induction of apoptosis in leukemic B-lymphoid cells by a CD19-specific TRAIL fusion protein

    No full text
    Although the treatment outcome of lymphoid malignancies has improved in recent years by the introduction of transplantation and antibody-based therapeutics, relapse remains a major problem. Therefore, new therapeutic options are urgently needed. One promising approach is the selective activation of apoptosis in tumor cells by the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). This study investigated the pro-apoptotic potential of a novel TRAIL fusion protein designated scFvCD19:sTRAIL, consisting of a CD19-specific single-chain Fv antibody fragment (scFv) fused to the soluble extracellular domain of TRAIL (sTRAIL). Potent apoptosis was induced by scFvCD19:sTRAIL in several CD19-positive tumor cell lines, whereas normal blood cells remained unaffected. In mixed culture experiments, selective binding of scFvCD19:sTRAIL to CD19-positive cells resulted in strong induction of apoptosis in CD19-negative bystander tumor cells. Simultaneous treatment of CD19-positive cell lines with scFvCD19:sTRAIL and valproic acid (VPA) or Cyclosporin A induced strongly synergistic apoptosis. Treatment of patient-derived acute B-lymphoblastic leukemia (B-ALL) and chronic B-lymphocytic leukemia (B-CLL) cells resulted in strong tumoricidal activity that was further enhanced by combination with VPA. In addition, scFvCD19:sTRAIL prevented engraftment of human Nalm-6 cells in xenotransplanted NOD/Scid mice. The pre-clinical data presented here warrant further investigation of scFvCD19:sTRAIL as a potential new therapeutic agent for CD19-positive B-lineage malignancies
    corecore