19 research outputs found

    Grey Box Implementation of Block Ciphers Preserving the Confidentiality of their Design

    Get PDF
    In 1997,Patarin and Goubin introduce new asymmetric cryptosystems based on the difficulty of recovering two systems of multivariate polynomials from their composition. We make a different use of this difficult algorithmic problem to obtain a way of representing block ciphers concealing their design but still leaving them executable. We show how to implement our solution with Field Programmable Gate Array. Finally, we give a compact representation of our solution using Binary Decision Diagrams

    Differential Power Analysis of HMAC SHA-2 in the Hamming Weight Model

    Get PDF
    International audienceAs any algorithm manipulating secret data, HMAC is potentially vulnerable to side channel attacks. In 2007, McEvoy et al. proposed a differential power analysis attack against HMAC instantiated with hash functions from the SHA-2 family. Their attack works in the Hamming distance leakage model and makes strong assumptions on the target implementation. In this paper, we present an attack on HMAC SHA-2 in the Hamming weight leakage model, which advantageously can be used when no information is available on the targeted implementation. Furthermore, our attack can be adapted to the Hamming distance model with weaker assumptions on the implementation. We show the feasibility of our attack on simulations, and we study its overall cost and success rate. We also provide an evaluation of the performance overhead induced by the countermeasures necessary to avoid the attack

    Themis: an On-Site Voting System with Systematic Cast-as-intended Verification and Partial Accountability

    Get PDF
    International audienceWe propose an on-site voting system Themis, that aims at improving security when local authorities are not fully trusted. Voters vote thanks to voting sheets as well as smart cards that produce encrypted ballots. Electronic ballots are systematically audited, without compromising privacy. Moreover, the system includes a precise dispute resolution procedure identifying misbehaving parties. We conduct a full formal analysis of Themis using ProVerif, with a novel approach in order to cover the modular arithmetic needed in our protocol. In order to evaluate the usability of our system, we organized a voting experiment on a (small) group of voters

    ECDSA White-Box Implementations: Attacks and Designs from CHES 2021 Challenge

    Get PDF
    Despite the growing demand for software implementations of ECDSA secure against attackers with full control of the execution environment, scientific literature on ECDSA white-box design is scarce. The CHES 2021 WhibOx contest was thus held to assess the state-of-the-art and encourage relevant practical research, inviting developers to submit ECDSA white-box implementations and attackers to break the corresponding submissions. In this work, attackers (team TheRealIdefix) and designers (team zerokey) join to describe several attack techniques and designs used during this contest. We explain the methods used by the team TheRealIdefix, which broke the most challenges, and we show the efficiency of each of these methods against all the submitted implementations. Moreover, we describe the designs of the two winning challenges submitted by the team zerokey; these designs represent the ECDSA signature algorithm by a sequence of systems of low-degree equations, which are obfuscated with affine encodings and extra random variables and equations. The WhibOx contest has shown that securing ECDSA in the white-box model is an open and challenging problem, as no implementation survived more than two days. In this context, our designs provide a starting methodology for further research, and our attacks highlight the weak points future work should address

    ECDSA White-Box Implementations: Attacks and Designs from WhibOx 2021 Contest

    Get PDF
    Despite the growing demand for software implementations of ECDSA secure against attackers with full control of the execution environment, the scientific literature on white-box ECDSA design is scarce. To assess the state-of-the-art and encourage practical research on this topic, the WhibOx 2021 contest invited developers to submit white-box ECDSA implementations and attackers to break the corresponding submissions. In this work we describe several attack techniques and designs used during the WhibOx 2021 contest. We explain the attack methods used by the team TheRealIdefix, who broke the largest number of challenges, and we show the success of each method against all the implementations in the contest. Moreover, we describe the designs, submitted by the team zerokey, of the two winning challenges; these designs represent the ECDSA signature algorithm by a sequence of systems of low-degree equations, which are obfuscated with affine encodings and extra random variables and equations. The WhibOx contest has shown that securing ECDSA in the white-box model is an open and challenging problem, as no implementation survived more than two days. To this end, our designs provide a starting methodology for further research, and our attacks highlight the weak points future work should address

    Smart-card Deployment of an Electronic Voting Protocol

    No full text
    International audienc
    corecore