11 research outputs found
Genetic parameters and genetic trends for production traits in dairy Gir cattle
ABSTRACT: The objective of this research was to estimate genetic parameters and genetic trends (GT) for 305-day milk yield (MY305) and 305-day fat yield (FY305) of purebred Dairy Gir animals of the National Dairy Gir Breeding Program. The restricted maximum likelihood method was used in an animal model. GT were obtained via linear regression and divided into two periods (1935-1992 and 1993-2013 for PL305; 1935-1992 and 1993-2010 for MY305). The estimated heritabilities were 0.23 (MY305) and 0.10 (FY305). The GT (kg/year) values for MY305 in the 2nd period for measured females (25.49), females (26.11), and males (35.13) were higher than those found in the 1st period (2.52; 2.06, and 1.00, respectively). The heritability estimated for MY305 confirmed the possibility of genetic improvement by selection and indicated a lower additive genetic effect on FY305 of purebred animals. The genetic progress for MY305 in all purebred population is denoted by the more expressive gains found from 1990’s, when the first bull catalogs were published
Protein Profile and oxidative metabolism of lambs experimentally infected with Haemonchus contortus and supplemented with selenium and vitamin E
Para avaliar a influência da suplementação com selênio e vitamina E sobre o perfil proteico e metabolismo oxidativo de cordeiros infectados experimentalmente pelo Haemonchus contortus, trinta cordeiros fêmeas foram distribuídos em quatro grupos: G1 (n=10): animais infectados; G2 (n=10): infectados e suplementados; G3 (n=5): controle; e G4 (n=5): não infectados e suplementados. Os grupos 1 e 2 receberam 500 larvas de H. contortus (L3), via oral, por um período de 20 dias, com intervalo de dois dias entre as doses. A suplementação nos grupos 2 e 4 foi realizada no dia zero, com 0,1mg kg-1 de Selenito de sódio (1,67%) e com 2.000UI de vitamina E por via intramuscular (IM). Somente a vitamina E foi reaplicada no dia 30. As coletas de sangue para determinação do perfil proteico (proteína total, albumina, alfa, beta e gamaglobulina) e metabolismo oxidativo (espécies reativas ao ácido tiobarbitúrico-TBARS e a enzima glutationa peroxidase (GSPX) foram realizadas nos dias zero, 20, 30, 45, 60 e 80. OPG foi quantificado nos dias 0, 20 ,45 e 80. Em relação aos valores de proteínas totais, albumina, betaglobulina e gamaglobulina, as principais diferenças foram observadas quando os grupos parasitados foram comparados com o grupo somente suplementado; e este manteve valores mais elevados. Conclui-se que não há influência da suplementação com selênio e vitamina E no perfil proteico e metabolismo oxidativo quando os cordeiros se encontram severamente parasitados por H.contortus.The objective of the present study was to describe the influence of supplementation with selenium and vitamin E on the protein and oxidative profiles of lambs experimentally infected with Haemonchus contortus. Thirty female lambs were divided into four groups as follows: G1 (n=10): infected animals; G2 (n=10): infected and supplemented; G3 (n=5): control; G4 (n=5): non-infected and supplemented. Groups 1 and 2 received 500 H. contortus larvae (L3) orally for a period of 20 days, with 2-day intervals between doses. Supplementation in groups 2 and 4 was performed on day zero by injecting 0.1mg kg-1 of sodium selenite solution (1.67%) and 2,000IU vitamin E through the intramuscular (IM) route. Vitamin E alone was injected once again on day thirty. The blood samples to determine the protein profile (total protein, albumin, alpha, beta and gamma) and oxidative metabolism (species reactive to thiobarbituric acid and glutathione peroxidase (GSPX) were performed on days zero, 20, 30, 45, 60 and 80. The OPG was quantified on days 0, 20, 45 and 80. Regarding the values of total proteins, albumin, beta and gamma globulins, the main differences were observed when the parasitized groups were compared to the supplemented, non-infected group, the latter exhibiting higher values. It is concluded that there is no influence of supplementation with vitamin E and selenium in the protein profile and oxidative metabolism when the lambs are severely parasitized with H. contortus
Consistent patterns of common species across tropical tree communities
Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1,2,3,4,5,6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees.Publisher PDFPeer reviewe
Identification of human chromosome 22 transcribed sequences with ORF expressed sequence tags
Transcribed sequences in the human genome can be identified with confidence only by alignment with sequences derived from cDNAs synthesized from naturally occurring mRNAs. We constructed a set of 250,000 cDNAs that represent partial expressed gene sequences and that are biased toward the central coding regions of the resulting transcripts. They are termed ORF expressed sequence tags (ORESTES). The 250,000 ORESTES were assembled into 81,429 contigs. Of these, 1,181 (1.45%) were found to match sequences in chromosome 22 with at least one ORESTES contig for 162 (65.6%) of the 247 known genes, for 67 (44.6%) of the 150 related genes, and for 45 of the 148 (30.4%) EST-predicted genes on this chromosome. Using a set of stringent criteria to validate our sequences, we identified a further 219 previously unannotated transcribed sequences on chromosome 22. Of these, 171 were in fact also defined by EST or full length cDNA sequences available in GenBank but not utilized in the initial annotation of the first human chromosome sequence. Thus despite representing less than 15% of all expressed human sequences in the public databases at the time of the present analysis, ORESTES sequences defined 48 transcribed sequences on chromosome 22 not defined by other sequences. All of the transcribed sequences defined by ORESTES coincided with DNA regions predicted as encoding exons by genscan. (http://genes.mit.edu/GENSCAN.html)
Consistent patterns of common species across tropical tree communities
Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1–6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees
Consistent patterns of common species across tropical tree communities
International audienceAbstract Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations 1–6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories 7 , we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees
Consistent patterns of common species across tropical tree communities
Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1,2,3,4,5,6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees
Consistent patterns of common species across tropical tree communities
Trees structure the Earth's most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth's 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories , we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world's most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees
Recommended from our members
Consistent patterns of common species across tropical tree communities
Trees structure the Earth's most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations
in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth's 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories
, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world's most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees