17,639 research outputs found
What is...a Curvelet?
Energized by the success of wavelets, the last two
decades saw the rapid development of a new field,
computational harmonic analysis, which aims to develop new systems for effectively representing phenomena of scientific interest. The curvelet transform is a recent addition to the family of mathematical tools this community enthusiastically builds up. In short, this is a new multiscale transform with strong directional character in which elements are highly anisotropic at fine scales, with effective support shaped according to the parabolic scaling
principle length^2 ~ width
Ridgelets and the representation of mutilated Sobolev functions
We show that ridgelets, a system introduced in [E. J. Candes, Appl. Comput. Harmon. Anal., 6(1999), pp. 197–218], are optimal to represent smooth multivariate functions that may exhibit linear singularities. For instance, let {u · x − b > 0} be an arbitrary hyperplane and consider the singular function f(x) = 1{u·x−b>0}g(x), where g is compactly supported with finite Sobolev L2 norm ||g||Hs, s > 0. The ridgelet coefficient sequence of such an object is as sparse as if f were without singularity, allowing optimal partial reconstructions. For instance, the n-term approximation obtained by keeping the terms corresponding to the n largest coefficients in the ridgelet series achieves a rate of approximation of order n−s/d; the presence of the singularity does not spoil the quality of the ridgelet approximation. This is unlike all systems currently in use, especially Fourier or wavelet representations
Solving Quadratic Equations via PhaseLift when There Are About As Many Equations As Unknowns
This note shows that we can recover a complex vector x in C^n exactly from on
the order of n quadratic equations of the form ||^2 = b_i, i = 1, ...,
m, by using a semidefinite program known as PhaseLift. This improves upon
earlier bounds in [3], which required the number of equations to be at least on
the order of n log n. We also demonstrate optimal recovery results from noisy
quadratic measurements; these results are much sharper than previously known
results.Comment: 6 page
A probabilistic and RIPless theory of compressed sensing
This paper introduces a simple and very general theory of compressive
sensing. In this theory, the sensing mechanism simply selects sensing vectors
independently at random from a probability distribution F; it includes all
models - e.g. Gaussian, frequency measurements - discussed in the literature,
but also provides a framework for new measurement strategies as well. We prove
that if the probability distribution F obeys a simple incoherence property and
an isotropy property, one can faithfully recover approximately sparse signals
from a minimal number of noisy measurements. The novelty is that our recovery
results do not require the restricted isometry property (RIP) - they make use
of a much weaker notion - or a random model for the signal. As an example, the
paper shows that a signal with s nonzero entries can be faithfully recovered
from about s log n Fourier coefficients that are contaminated with noise.Comment: 36 page
- …