64 research outputs found
Batch fermentation of d-glucose/cellobiose mixtures by clostridium acetobutylicum atcc 824: energetic and carbon source regulation
Lignocellulosic biomass presents an interesting alternative to fossil carbon sources as a source of renewable energy that respects the environment. Indeed, this abundant resource can be converted by a wide range of thermal, chemical and biological techniques to compounds that can be used as substrate in anaerobic fermentation to produce biofuels and building blocks.
As a general rule, micro-organisms possess regulation mechanisms that ensure the sequential use of the carbon and energy sources present in their environment. These regulations may consequently play a vital role in biomass to energy and building blocks conversion performances. Clostridium acetobutylicum, a promising biomass transformation organism, has the capacity to utilize a wide variety of compounds as carbon and energy sources. These compounds may be present in a complex mixture produced from cellulose conversion. Therefore it is of high importance to understand the potential synergy or inhibiting effects of the cellulose-derived products. The aim of this work is to study this regulation mechanism by using glucose and cellobiose as model substrates, provided alone and in mixtures to Clostridium acetobutylicum. Our experiments show a total consumption of both substrates, alone or in mixtures, with an increment of 30% of microbial growth production of cellobiose over glucose. A diauxic growth (cell growth in two phases) occurs in the presence of different mixtures of D-glucose and cellobiose. In general, D-glucose is the preferred substrate and after its complete consumption, when exhausted, the growth kinetics exhibits an adaptation time, of approximately 1-2 hours, before to be able to use cellobiose (figure 1). This adaptation is probably due to an induction stage that is also accompanied of acid consumption (lactic acid). This study provides a first approach to understand the metabolic changes related to substrate utilization in Clostridia.
Please click Additional Files below to see the full abstract
Cellulose valorization in biorefinery: integration of fast pyrolysis and fermentation for building blocks production
A combination of thermochemical and biological conversion of cellulosic materials is a promising alternative for the production of biofuels and building blocks in an integrated biorefinery. Indeed, enzymatic depolymerization is selective but slow and expensive. It would be of interest to associate thermochemical conversion for a fast depolymerization of biomass with biochemical conversion for a selective conversion of depolymerized liquid streams. In this work, cellulose is pyrolyzed to produce sugars that can be used as substrate for a fermentation process. This work is the result of a scientific collaboration between ICFAR (London, Canada) and CNRS (Nancy, France).
Pyrolysis was performed in a fluidized bed reactor at 475áµ’C with a bio-oil yield of 73.4 wt.% (Figure 1). Different fractions of bio-oil were recovered with a set of 5 condensers. Levoglucosan and total sugars were quantified by GC-FID-MS and phenol/sulphuric acid method respectively. The maximum yields of levoglucosan (43.7 %) and total sugars (80.4 %) were found in the first condenser that was kept at 70áµ’C.
Due to the non-fermentable condition of levoglucosan, all the oil fractions, as well as a mixture of them, were hydrolyzed to obtain fermentable glucose. The different bio-oil fractions and a mixture of all fractions were used as substrate in a fermentation reactor to produce acetone, butanol and ethanol (ABE). The talk will present the mass yields obtained for the integrated process combining pyrolysis, hydrolysis and fermentation (figure 2).
The microorganisms were not able to grow in the mixture of all fractions. On the contrary, fractions from condenser 1 and 2 lead to normal bacterial growth and fermentation products pattern. Maximum yields (per gram of oil) of acetone=4.6 %, butanol=13.2 % and ethanol=0.1 % were found for the bio-oil collected in the first condenser. These results put in evidence the importance of pyrolysis with staged condensation as an entry for fermentation processes.
The methodology proposed in this work could be applied to other biochemical conversion of bio-oils to produce higher added-value products.
Please click Additional Files below to see the full abstract
Combining metabolic flux analysis with proteomics to shed light on the metabolic flexibility: the case of Desulfovibrio vulgaris Hildenborough
IntroductionDesulfovibrio vulgaris Hildenborough is a gram-negative anaerobic bacterium belonging to the sulfate-reducing bacteria that exhibits highly versatile metabolism. By switching from one energy mode to another depending on nutrients availability in the environments„ it plays a central role in shaping ecosystems. Despite intensive efforts to study D. vulgaris energy metabolism at the genomic, biochemical and ecological level, bioenergetics in this microorganism remain far from being fully understood. Alternatively, metabolic modeling is a powerful tool to understand bioenergetics. However, all the current models for D. vulgaris appeared to be not easily adaptable to various environmental conditions.MethodsTo lift off these limitations, here we constructed a novel transparent and robust metabolic model to explain D. vulgaris bioenergetics by combining whole-cell proteomic analysis with modeling approaches (Flux Balance Analysis).ResultsThe iDvu71 model showed over 0.95 correlation with experimental data. Further simulations allowed a detailed description of D. vulgaris metabolism in various conditions of growth. Altogether, the simulations run in this study highlighted the sulfate-to-lactate consumption ratio as a pivotal factor in D. vulgaris energy metabolism.DiscussionIn particular, the impact on the hydrogen/formate balance and biomass synthesis is discussed. Overall, this study provides a novel insight into D. vulgaris metabolic flexibility
Analyse du métabolisme de clostridium cellulolyticum (importance des débordements cataboliques dans la distribution du flux du carbone et des électrons)
NANCY1-SCD Sciences & Techniques (545782101) / SudocSudocFranceF
ESTIMATION OF SEX-AND AGE-RELATED SURVIVAL RATES IN A MICROTINE POPULATION
International audienc
- …