2 research outputs found

    Automatic Multiorgan Segmentation in Pelvic Region with Convolutional Neural Networks on 0.35 T MR-Linac Images

    No full text
    MR-Linac is a recent device combining a linear accelerator with an MRI scanner. The improved soft tissue contrast of MR images is used for optimum delineation of tumors or organs at risk (OARs) and precise treatment delivery. Automatic segmentation of OARs can contribute to alleviating the time-consuming process for radiation oncologists and improving the accuracy of radiation delivery by providing faster, more consistent, and more accurate delineation of target structures and organs at risk. It can also help reduce inter-observer variability and improve the consistency of contouring while reducing the time required for treatment planning. In this work, state-of-the-art deep learning techniques were evaluated based on 2D and 2.5D training strategies to develop a comprehensive tool for the accurate segmentation of pelvic OARs dedicated to 0.35 T MR-Linac. In total, 103 cases with 0.35 T MR images of the pelvic region were investigated. Experts considered and contoured the bladder, rectum, and femoral heads as OARs and the prostate as the target volume. For the training of the neural network, 85 patients were randomly selected, and 18 were used for testing. Multiple U-Net-based architectures were considered, and the best model was compared using both 2D and 2.5D training strategies. The evaluation of the models was performed based on two metrics: the Dice similarity coefficient (DSC) and the Hausdorff distance (HD). In the 2D training strategy, Residual Attention U-Net (ResAttU-Net) had the highest scores among the other deep neural networks. Due to the additional contextual information, the configured 2.5D ResAttU-Net performed better. The overall DSC were 0.88 ± 0.09 and 0.86 ± 0.10, and the overall HD was 1.78 ± 3.02 mm and 5.90 ± 7.58 mm for 2.5D and 2D ResAttU-Net, respectively. The 2.5D ResAttU-Net provides accurate segmentation of OARs without affecting the computational cost. The developed end-to-end pipeline will be merged with the treatment planning system for in-time automatic segmentation

    Comparison of In-Vivo and Ex-Vivo Ascending Aorta Elastic Properties through Automatic Deep Learning Segmentation of Cine-MRI and Biomechanical Testing

    No full text
    Ascending aortic aneurysm is a pathology that is important to be supervised and treated. During the years the aorta dilates, it becomes stiff, and its elastic properties decrease. In some cases, the aortic wall can rupture leading to aortic dissection with a high mortality rate. The main reference standard to measure when the patient needs to undertake surgery is the aortic diameter. However, the aortic diameter was shown not to be sufficient to predict aortic dissection, implying other characteristics should be considered. Therefore, the main objective of this work is to assess in-vivo the elastic properties of four different quadrants of the ascending aorta and compare the results with equivalent properties obtained ex-vivo. The database consists of 73 cine-MRI sequences of thoracic aorta acquired in axial orientation at the level of the pulmonary trunk. All the patients have dilated aorta and surgery is required. The exams were acquired just prior to surgery, each consisting of 30 slices on average across the cardiac cycle. Multiple deep learning architectures have been explored with different hyperparameters and settings to automatically segment the contour of the aorta on each image and then automatically calculate the aortic compliance. A semantic segmentation U-Net network outperforms the rest explored networks with a Dice score of 98.09% (±0.96%) and a Hausdorff distance of 4.88 mm (±1.70 mm). Local aortic compliance and local aortic wall strain were calculated from the segmented surfaces for each quadrant and then compared with elastic properties obtained ex-vivo. Good agreement was observed between Young’s modulus and in-vivo strain. Our results suggest that the lateral and posterior quadrants are the stiffest. In contrast, the medial and anterior quadrants have the lowest aortic stiffness. The in-vivo stiffness tendency agrees with the values obtained ex-vivo. We can conclude that our automatic segmentation method is robust and compatible with clinical practice (thanks to a graphical user interface), while the in-vivo elastic properties are reliable and compatible with the ex-vivo ones
    corecore