15 research outputs found

    Molecular Mechanisms in Endothelial Cell Differentiation

    No full text
    Angiogenesis is the formation of new blood vessels from the pre-existing blood vessels. Blood vessels are composed of endothelial cells and supporting musculature. Angiogenesis is regulated by numerous soluble ligands and by cell-matrix interactions. We have studied the molecular mechanisms in fibroblast growth factor-2 (FGF-2) and vascular endothelial growth factor-A (VEGF-A)-induced angiogenesis using immortalized endothelial cell lines in different angiogenesis assays. The role of the signaling protein H-Ras in FGF-2-induced in vitro angiogenesis was studied by expressing mutated versions of H-Ras in immortalized mouse brain endothelial cells using a tetracycline-regulated expression system. In vitro angiogenesis was analyzed as the ability of cells to invade a fibrin matrix and form branching structures in response to a combination of FGF-2 and tumor necrosis factor-α (TNF-α). Inhibition of H-Ras through the expression of dominant negative (S17N) H-Ras or pharmacological inactivation of H-Ras with a farnesyl transferase inhibitor, did not inhibit growth factor-induced invasion. In contrast, expression of constitutively active (G12V) H-Ras caused cells to adopt a transformed phenotype which inhibited invasive growth and cells formed solid tumors when injected in nude mice. These studies suggest that H-Ras activity is not required for differentiation but its activity must be tightly regulated as aberrant activity impairs endothelial cell differentiation. In order to screen for both known and novel genes that regulate angiogenesis we used large scale microarray analysis. In VEGF-A-stimulated telomerase immortalized human microvascular endothelial cells undergoing invasive growth in fibrin gels, or forming cord-like structures on collagen, we identified several genes that were differentially expressed. Some of these are known to be important for endothelial cell functions and angiogenesis while others have no previous connection with endothelial cell function or were transcripts with no assigned function. Further analysis of these proteins will aid in elucidating the molecular mechanisms underlying endothelial cell differentiation

    Recombinant Human VEGF165b Inhibits Experimental Choroidal Neovascularization

    No full text
    The alternative splice form of VEGF, VEGF-A165b, inhibits choroidal neovascularization at very low doses in mice, indicating that it may be an effective therapy for age-related macular degeneration, comparable with or better than existing anti-VEGF therapy

    Regulation of Vascular Endothelial Growth Factor (VEGF) Splicing from Pro-angiogenic to Anti-angiogenic Isoforms: A NOVEL THERAPEUTIC STRATEGY FOR ANGIOGENESIS*

    No full text
    Vascular endothelial growth factor (VEGF) is produced either as a pro-angiogenic or anti-angiogenic protein depending upon splice site choice in the terminal, eighth exon. Proximal splice site selection (PSS) in exon 8 generates pro-angiogenic isoforms such as VEGF165, and distal splice site selection (DSS) results in anti-angiogenic isoforms such as VEGF165b. Cellular decisions on splice site selection depend upon the activity of RNA-binding splice factors, such as ASF/SF2, which have previously been shown to regulate VEGF splice site choice. To determine the mechanism by which the pro-angiogenic splice site choice is mediated, we investigated the effect of inhibition of ASF/SF2 phosphorylation by SR protein kinases (SRPK1/2) on splice site choice in epithelial cells and in in vivo angiogenesis models. Epithelial cells treated with insulin-like growth factor-1 (IGF-1) increased PSS and produced more VEGF165 and less VEGF165b. This down-regulation of DSS and increased PSS was blocked by protein kinase C inhibition and SRPK1/2 inhibition. IGF-1 treatment resulted in nuclear localization of ASF/SF2, which was blocked by SPRK1/2 inhibition. Pull-down assay and RNA immunoprecipitation using VEGF mRNA sequences identified an 11-nucleotide sequence required for ASF/SF2 binding. Injection of an SRPK1/2 inhibitor reduced angiogenesis in a mouse model of retinal neovascularization, suggesting that regulation of alternative splicing could be a potential therapeutic strategy in angiogenic pathologies

    A novel multiplexed immunoassay identifies CEA, IL-8 and prolactin as prospective markers for Dukes' stages A-D colorectal cancers

    No full text
    Background: Current methods widely deployed for colorectal cancers (CRC) screening lack the necessary sensitivity and specificity required for population-based early disease detection. Cancer-specific protein biomarkers are thought to be produced either by the tumor itself or other tissues in response to the presence of cancers or associated conditions. Equally, known examples of cancer protein biomarkers (e.g., PSA, CA125, CA19-9, CEA, AFP) are frequently found in plasma at very low concentration (pg/mL-ng/mL). New sensitive and specific assays are therefore urgently required to detect the disease at an early stage when prognosis is good following surgical resection. This study was designed to meet the longstanding unmet clinical need for earlier CRC detection by measuring plasma candidate biomarkers of cancer onset and progression in a clinical stage-specific manner. EDTA plasma samples (1 μL) obtained from 75 patients with Dukes' staged CRC or unaffected controls (age and sex matched with stringent inclusion/exclusion criteria) were assayed for expression of 92 human proteins employing the Proseek® Multiplex Oncology I proximity extension assay. An identical set of plasma samples were analyzed utilizing the Bio-Plex ProTM human cytokine 27-plex immunoassay. Results: Similar quantitative expression patterns for 13 plasma antigens common to both platforms endorsed the potential efficacy of Proseek as an immune-based multiplex assay for proteomic biomarker research. Proseek found that expression of Carcinoembryonic Antigen (CEA), IL-8 and prolactin are significantly correlated with CRC stage. Conclusions: CEA, IL-8 and prolactin expression were found to identify between control (unaffected), non-malignant (Dukes' A + B) and malignant (Dukes' C + D) stages.12 page(s

    VEGF-A165b Is Cytoprotective and Antiangiogenic in the Retina

    No full text
    The alternative splice variant of VEGF, VEGF165b, is cytoprotective for endothelial and epithelial cells and is antiangiogenic, making it a new candidate for the treatment of ischemic retinopathies

    WT1 Mutants Reveal SRPK1 to Be a Downstream Angiogenesis Target by Altering VEGF Splicing

    Get PDF
    Angiogenesis is regulated by the balance of proangiogenic VEGF 165 and antiangiogenic VEGF 165b splice isoforms. Mutations in WT1, the Wilms' tumor suppressor gene, suppress VEGF 165b and cause abnormal gonadogenesis, renal failure, and Wilms' tumors. In WT1 mutant cells, reduced VEGF 165b was due to lack of WT1-mediated transcriptional repression of the splicing-factor kinase SRPK1. WT1 bound to the SRPK1 promoter, and repressed expression through a specific WT1 binding site. In WT1 mutant cells SRPK1-mediated hyperphosphorylation of the oncogenic RNA binding protein SRSF1 regulated splicing of VEGF and rendered WT1 mutant cells proangiogenic. Altered VEGF splicing was reversed by wild-type WT1, knockdown of SRSF1, or SRPK1 and inhibition of SRPK1, which prevented in vitro and in vivo angiogenesis and associated tumor growth. © 2011 Elsevier Inc

    Homogenous 96-Plex PEA Immunoassay Exhibiting High Sensitivity, Specificity, and Excellent Scalability

    Get PDF
    <div><p>Medical research is developing an ever greater need for comprehensive high-quality data generation to realize the promises of personalized health care based on molecular biomarkers. The nucleic acid proximity-based methods proximity ligation and proximity extension assays have, with their dual reporters, shown potential to relieve the shortcomings of antibodies and their inherent cross-reactivity in multiplex protein quantification applications. The aim of the present study was to develop a robust 96-plex immunoassay based on the proximity extension assay (PEA) for improved high throughput detection of protein biomarkers. This was enabled by: (1) a modified design leading to a reduced number of pipetting steps compared to the existing PEA protocol, as well as improved intra-assay precision; (2) a new enzymatic system that uses a hyper-thermostabile enzyme, Pwo, for uniting the two probes allowing for room temperature addition of all reagents and improved the sensitivity; (3) introduction of an inter-plate control and a new normalization procedure leading to improved inter-assay precision (reproducibility). The multiplex proximity extension assay was found to perform well in complex samples, such as serum and plasma, and also in xenografted mice and resuspended dried blood spots, consuming only 1 µL sample per test. All-in-all, the development of the current multiplex technique is a step toward robust high throughput protein marker discovery and research.</p></div
    corecore