99 research outputs found

    BIOB 272.00: Genetics and Evolution

    Get PDF

    BIOL 410.01: Insect Biology

    Get PDF

    BIOE 406.00: Behavior and Evolution

    Get PDF

    BIOE 406.01: Behavior and Evolution

    Get PDF

    BIOE 409.00: Behavior and Evolution Discussion

    Get PDF

    Integrating Development with Evolution: a Case Study with Beetle Horns

    Get PDF

    BIOB 272.00: Genetics and Evolution

    Get PDF

    BIOB 595.01: Special Topics - Advanced Topics in Genetics and Evolution

    Get PDF

    Evolution of Sexual Dimorphism and Male Dimorphism in the Expression of Beetle Horns: Phylogenetic Evidence for Modularity, Evolutionary Lability, and Constraint

    Get PDF
    Beetle horns are enlarged outgrowths of the head or thorax that are used as weapons in contests over access to mates. Horn development is typically confined to males (sexual dimorphism) and often only to the largest males (male dimorphism). Both types of dimorphism result from endocrine threshold mechanisms that coordinate cell proliferation near the end of the larval period. Here, we map the presence/absence of each type of dimorphism onto a recent phylogeny for the genus Onthophagits (Coleoptera: Scarabaeidae) to explore how horn development has changed over time. Our results provide empirical support for several recent predictions regarding the evolutionary lability of developmental thresholds, including uncoupled evolution of alternative phenotypes and repeated fixation of phenotypes. We also report striking evidence of a possible developmental constraint. We show that male dimorphism and sexual dimorphism map together on the phylogeny; whenever small males have horns, females also have horns (and vice versa). We raise the possibility that correlated evolution of these two phenomena results from a shared element in their endocrine regulatory mechanisms rather than a history of common selection pressures. These results illustrate the type of insight that can be gained only from the integration of developmental and evolutionary perspectives

    Threshold Evolution in Exotic Populations of a Polyphenic Beetle

    Get PDF
    Polyphenic development is thought to play an important role in the evolution of phenotypic diversity and morphological novelties, yet the evolution of polyphenisms has rarely been documented in natural populations. Here we compare the morphologies of male dung beetles (Onthophagus taurus; Coleoptera: Scarabaeidae) from populations introduced to Australia and the eastern United States. Males in this species express two alternative morphologies in response to larval feeding conditions. Males encountering favourable conditions grow larger than a threshold body size and develop a pair of horns on their heads, whereas males that encounter poor conditions do not reach this threshold size and remain hornless. Australian and US populations did not differ in overall body size ranges, but exhibited significant differences in the location of the critical body size threshold that separates alternative male morphs. Australian males remained hornless at much larger body sizes than males in US populations, resulting in substantial and significant differences in the average body size-horn length allometry between exotic populations, as well as significant differences in morph ratios. The phenotypic divergence observed between field populations was maintained in laboratory populations after two generations under identical environmental conditions, suggesting a genetic basis to allometric divergence in these populations. Divergence between exotic O. taurus populations was of a magnitude and kind typically observed between species. We use our results to examine potential causes of allometric divergence in onthophagine beetles, and discuss the evolutionary potential of threshold traits and polyphenic development in the origin of morphological and behavioural diversity
    corecore