5 research outputs found

    Evaluation of cell-based and surrogate SARS-CoV-2 neutralization assays

    Get PDF
    Determinants of protective immunity against SARS-CoV-2 infection require the development of well-standardized, reproducible antibody assays. This need has led to the emergence of a variety of neutralization assays. Head-to-head evaluation of different SARS-CoV-2 neutralization platforms could facilitate comparisons across studies and laboratories. Five neutralization assays were compared using forty plasma samples from convalescent individuals with mild-to-moderate COVID-19: four cell-based systems using either live recombinant SARS-CoV-2 or pseudotyped viral particles created with lentivirus (LV) or vesicular stomatitis virus (VSV) packaging and one surrogate ELISA-based test that measures inhibition of the spike protein receptor binding domain (RBD) binding its receptor, human angiotensin converting enzyme 2 (hACE2). Vero, Vero E6, HEK293T expressing hACE2, and TZM-bl cells expressing hACE2 and transmembrane serine protease 2 were tested. All cell-based assays showed 50% neutralizing dilution (ND50) geometric mean titers (GMTs) that were highly correlated (Pearson r = 0.81–0.89) and ranged within 3.4-fold. The live-virus assay and LV-pseudovirus assays with HEK293T/hACE2 cells showed very similar mean titers: 141 and 178, respectively. ND50 titers positively correlated with plasma IgG targeting SARS-CoV-2 spike and RBD (r = 0.63–0.89), but moderately correlated with nucleoprotein IgG (r = 0.46–0.73). ND80 GMTs mirrored ND50 data and showed similar correlation between assays and with IgG concentrations. The VSV-pseudovirus assay and LV-pseudovirus assay with HEK293T/hACE2 cells in low and high-throughput versions were calibrated against the WHO SARS-CoV-2 IgG standard. High concordance between the outcomes of cell-based assays with live and pseudotyped virions enables valid cross-study comparison using these platforms. 24

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Serum concentration of antigen-specific IgG can substantially bias interpretation of antibody-dependent phagocytosis assay readout

    No full text
    Summary: Because virus neutralization cannot solely explain vaccine-induced, antibody-mediated protection, antibody effector functions are being considered as a potential correlate of protection (CoP). However, measuring effector functions at a fixed serum dilution for high throughput purposes makes it difficult to distinguish between the effect of serum antibody concentration and antibody properties such as epitopes, subclass, and glycosylation. To address this issue, we evaluated antibody-dependent cellular phagocytosis (ADCP) assay against SARS-CoV-2 spike. Adjustment of serum samples to the same concentration of antigen-specific IgG prior to the ADCP assay revealed concentration-independent differences in ADCP after mRNA vaccination in subjects with and without prior SARS-CoV-2 infection not detectable in assay performed with fixed serum dilution. Phagocytosis measured at different concentrations of spike-specific IgG strongly correlated with the area under the curve (AUC) indicating that ADCP assay can be performed at a standardized antibody concentration for the high throughput necessary for vaccine trial analyses

    Methods to Measure Antibody Neutralization of Live Human Coronavirus OC43

    No full text
    The human Betacoronavirus OC43 is a common cause of respiratory viral infections in adults and children. Lung infections with OC43 are associated with mortality, especially in hematopoietic stem cell transplant recipients. Neutralizing antibodies play a major role in protection against many respiratory viral infections, but to date a live viral neutralization assay for OC43 has not been described. We isolated a human monoclonal antibody (OC2) that binds to the spike protein of OC43 and neutralizes the live virus derived from the original isolate of OC43. We used this monoclonal antibody to develop and test the performance of two readily accessible in vitro assays for measuring antibody neutralization, one utilizing cytopathic effect and another utilizing an ELISA of infected cells. We used both methods to measure the neutralizing activity of the OC2 monoclonal antibody and of human plasma. These assays could prove useful for studying humoral responses to OC43 and cross-neutralization with other medically important betacoronaviruses
    corecore