29 research outputs found
Chronic fetal hypoxia disrupts the peri-conceptual environment in next-generation adult female rats.
KEY POINTS: Exposure to chronic hypoxia during gestation influences long-term health and development, including reproductive capacity, across generations. If the peri-conceptual environment in the developing oviduct is affected by gestational hypoxia, then this could have implications for later fertility and the health of future generations. In the present study, we show that the oviducts of female rats exposed to chronic hypoxia in utero have reduced telomere length, decreased mitochondrial DNA biogenesis and increased oxidative stress The results of the present study show that exposure to chronic gestational hypoxia leads to accelerated ageing of the oviduct in early adulthood and they help us understand how exposure to hypoxia during development could influence reproductive health across generations. ABSTRACT: Exposure to chronic hypoxia during fetal development has important effects on immediate and long-term outcomes in offspring. Adverse impacts in adult offspring include impairment of cardiovascular function, metabolic derangement and accelerated ovarian ageing. However, it is not known whether other aspects of the female reproductive system may be similarly affected. In the present study, we examined the impact of chronic gestational hypoxia on the developing oviduct. Wistar rat dams were randomized to either normoxia (21%) or hypoxia (13%) from day 6 post-mating until delivery. Post-delivery female offspring were maintained in normoxia until 4 months of age. Oviductal gene expression was assayed at the RNA (quantitative RT-PCR) and protein (western blotting) levels. Oviductal telomere length was assayed using Southern blotting. Oviductal telomere length was reduced in the gestational hypoxia-exposed animals compared to normoxic controls (P < 0.01). This was associated with a specific post-transcriptional reduction in the KU70 subunit of DNA-pk in the gestational hypoxia-exposed group (P < 0.05). Gestational hypoxia-exposed oviducts also showed evidence of decreased mitochondrial DNA biogenesis, reduced mtDNA copy number (P < 0.05) and reduced gene expression of Tfam (P < 0.05) and Pgc1α (P < 0.05). In the hypoxia-exposed oviducts, there was upregulation of mitochondrial-specific anti-oxidant defence enzymes (MnSOD; P < 0.01). Exposure to chronic gestational hypoxia leads to accelerated ageing of the oviduct in adulthood. The oviduct plays a central role in early development as the site of gamete transport, syngamy, and early development; hence, accelerated ageing of the oviductal environment could have important implications for fertility and the health of future generations
Documenting ---- in Bloomington-Normal: A Community Report on Intolerance, Segregation, Accessibility, Inclusion, and Progress, and Improvement
For the local chapter of Not In Our Town, we document intolerance, discrimination, segregation, disparities of access, and disparities in the criminal justice system in Bloomington-Normal, IL. Using archival material, secondary data, and primary data, we examine these issues from the mid-1990s to the present. We also assess the position of the organization in the community and provide strategies for future success. In sum, Bloomington-Normal was and is intolerant; discrimination did and does take place in this community; there are disparities of access and in the criminal justice system; we are segregated. The community is also less of these things than it used to be and is less of these things than other places. Fifteen undergraduate students in Sociology 300, twelve graduate students in Sociology 477, a teaching assistant, and an instructor conducted this study in spring 2017
Acquired resistance to oxaliplatin is not directly associated with increased resistance to DNA damage in SK-N-ASrOXALI4000, a newly established oxaliplatin-resistant sub-line of the neuroblastoma cell line SK-N-AS
The formation of acquired drug resistance is a major reason for the failure of anti-cancer therapies after initial response. Here, we introduce a novel model of acquired oxaliplatin resistance, a sub-line of the non-MYCN-amplified neuroblastoma cell line SK-N-AS that was adapted to growth in the presence of 4000 ng/mL oxaliplatin (SK-N-ASrOXALI4000). SK-N-ASrOXALI4000 cells displayed enhanced chromosomal aberrations compared to SK-N-AS, as indicated by 24-chromosome fluorescence in situ hybridisation. Moreover, SK-N-ASrOXALI4000 cells were resistant not only to oxaliplatin but also to the two other commonly used anti-cancer platinum agents cisplatin and carboplatin. SK-N-ASrOXALI4000 cells exhibited a stable resistance phenotype that was not affected by culturing the cells for 10 weeks in the absence of oxaliplatin. Interestingly, SK-N-ASrOXALI4000 cells showed no cross resistance to gemcitabine and increased sensitivity to doxorubicin and UVC radiation, alternative treatments that like platinum drugs target DNA integrity. Notably, UVC-induced DNA damage is thought to be predominantly repaired by nucleotide excision repair and nucleotide excision repair has been described as the main oxaliplatin-induced DNA damage repair system. SK-N-ASrOXALI4000 cells were also more sensitive to lysis by influenza A virus, a candidate for oncolytic therapy, than SK-N-AS cells. In conclusion, we introduce a novel oxaliplatin resistance model. The oxaliplatin resistance mechanisms in SK-N-ASrOXALI4000 cells appear to be complex and not to directly depend on enhanced DNA repair capacity. Models of oxaliplatin resistance are of particular relevance since research on platinum drugs has so far predominantly focused on cisplatin and carboplatin
Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study
Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research
How can we get Iraq- and Afghanistan-deployed US Veterans to participate in health-related research? Findings from a national focus group study
Abstract Background Research participant recruitment is often fraught with obstacles. Poor response rates can reduce statistical power, threaten both internal and external validity, and increase study costs and duration. Military personnel are socialized to a specific set of laws, norms, traditions, and values; their willingness to participate in research may differ from civilians. The aims of this study were to better understand the views of United States (US) Veterans who served in Operation Enduring Freedom (OEF)/ Operation Iraqi Freedom (OIF) on research and motivators for participating in research to inform recruitment for a planned observational study of respiratory health in OEF/OIF Veterans. Methods We conducted 10 focus groups in a purposive sample of OEF/OIF Veterans (n = 89) in five US cities in 2015. Key topics included: reasons for participating or declining to participate in health-related research, logistics around study recruitment and conduct, compensation, written materials, and information sharing preferences for study results. Two authors independently coded the data using template analysis. Results Participants identified three criteria that motivated a decision to participate in health-related research: 1) adequate compensation, 2) desire to help other Veterans, and 3) significance and relevance of the research topic. For many, both sufficient compensation and a sense that the study would help other Veterans were critical. The importance of transparency arose as a key theme; Veterans communicated that vague language about study aims or procedures engendered distrust. Lastly, participants expressed a desire for studies to communicate results of their specific health tests, as well as overall study findings, back to research participants. Conclusions OEF/OIF Veterans described trust, transparent communication, and respect as essential characteristics of research in which they would be willing to participate. Additional studies are needed to determine whether our results generalize to other US Veterans; nevertheless, our results highlight precepts that have been reported as important for recruitment in other populations. Researchers may benefit from using community-engaged research methods to seek feedback on recruitment materials and strategies prior to initiating research. For costly studies targeting a large sample (i.e. in the thousands), it may be important to test a variety of recruitment strategies
Chronic gestational hypoxia accelerates ovarian aging and lowers ovarian reserve in next-generation adult rats.
Chronic fetal hypoxia is a common complication observed in human pregnancy, impacting pregnancies across global contexts. Exposure to chronic intrauterine hypoxia has major short- and long-term consequences for offspring health. However, the impact of chronic gestational hypoxia on female reproductive system development is unknown. We aimed to understand the impact of exposure to chronic fetal hypoxia on the developing female reproductive system. Wistar rat dams underwent normoxia (21%) or hypoxia (13%) during pregnancy. Postnatally, all female offspring were maintained in normoxic conditions into early adulthood. Female rats exposed to chronic gestational hypoxia (13%) during their intrauterine development had decreased ovarian primordial follicular reserve compared to controls (P < 0.05). Adult females who had been exposed to chronic fetal hypoxia had significantly reduced somatic ovarian telomere length (P < 0.05) and reduced ovarian protein expression of KU70, a critical component of the DNA-activated protein kinase repair complex (P < 0.01). Gene expression of NADPH oxidase 2-mediated oxidative stress markers was increased (P < 0.05). Exposure to chronic hypoxia during fetal development leads to accelerated aging of the somatic ovary and decreased ovarian reserve in adulthood. Ovarian aging is highly sensitive to gestational hypoxia, with implications for future fertility in next-generation offspring of high-risk pregnancies.-Aiken, C. E., Tarry-Adkins, J. L., Spiroski, A.-M., Nuzzo, A. M., Ashmore, T. J., Rolfo, A., Sutherland, M. J., Camm, E. J., Giussani, D. A., Ozanne, S. E. Chronic gestational hypoxia accelerates ovarian aging and lowers ovarian reserve in next-generation adult rats.CEA was supported by a grant from the Addenbrooke’s Charitable Trust (ACT; RG94137) and by an Issac Newton Trust/Wellcome Trust ISSF/ University of Cambridge Joint Research Grant. SEO is supported by the MRC (MC_UU_12012/4). DAG is supported by The British Heart Foundation (PG/14/5/30546)
Recommended from our members
<i>In vivo</i> mitochondria‐targeted protection against uterine artery vascular dysfunction and remodelling in rodent hypoxic pregnancy
Publication status: PublishedAbstractGestational hypoxia adversely affects uterine artery function, increasing complications. However, an effective therapy remains unidentified. Here, we show in rodent uterine arteries that hypoxic pregnancy promotes hypertrophic remodelling, increases constrictor reactivity via protein kinase C signalling, and triggers compensatory dilatation via nitric oxide‐dependent mechanisms and stimulation of large conductance Ca2+‐activated K+‐channels. Maternal in vivo oral treatment with the mitochondria‐targeted antioxidant MitoQ in hypoxic pregnancy normalises uterine artery reactivity and prevents vascular remodelling. From days 6–20 of gestation (term ∼22 days), female Wistar rats were randomly assigned to normoxic or hypoxic (13–14% O2) pregnancy ± daily maternal MitoQ treatment (500 µm in drinking water). At 20 days of gestation, maternal, placental and fetal tissue was frozen to determine MitoQ uptake. The uterine arteries were harvested and, in one segment, constrictor and dilator reactivity was determined by wire myography. Another segment was fixed for unbiased stereological analysis of vessel morphology. Maternal administration of MitoQ in both normoxic and hypoxic pregnancy crossed the placenta and was present in all tissues analysed. Hypoxia increased uterine artery constrictor responses to norepinephrine, angiotensin II and the protein kinase C activator, phorbol 12,13‐dibutyrate. Hypoxia enhanced dilator reactivity to sodium nitroprusside, the large conductance Ca2+‐activated K+‐channel activator NS1619 and ACh via increased nitric oxide‐dependent mechanisms. Uterine arteries from hypoxic pregnancy showed increased wall thickness and MitoQ treatment in hypoxic pregnancy prevented all effects on uterine artery reactivity and remodelling. The data support mitochondria‐targeted therapy against adverse changes in uterine artery structure and function in high‐risk pregnancy.
imageKey points
Dysfunction and remodelling of the uterine artery are strongly implicated in many pregnancy complications, including advanced maternal age, maternal hypertension of pregnancy, maternal obesity, gestational diabetes and pregnancy at high altitude.
Such complications not only have immediate adverse effects on the growth of the fetus, but also they can also increase the risk of cardiovascular disease in the mother and offspring. Despite this, there is a significant unmet clinical need for therapeutics that treat uterine artery vascular dysfunction in adverse pregnancy.
Here, we show in a rodent model of gestational hypoxia that in vivo oral treatment of the mitochondria‐targeted antioxidant MitoQ protects against uterine artery vascular dysfunction and remodelling, supporting the use of mitochondria‐targeted therapy against adverse changes in uterine artery structure and function in high‐risk pregnancy.
</jats:sec
Beyond the Boom: Developing Policy to Advance US Leadership in Shale Oil and Hydraulic Fracturing
Created as part of the 2014 Jackson School for International Studies SIS 495:Task Force. Scott L. Montgomery, Task Force Advisor; Julia Nesheiwat, Evaluator; Sarah Coney, Coordinator.The shale oil revolution of the early twenty-first century has placed the United States at
one of its most pivotal points in recent history with regards to energy policy. The production
boom in 2008 led to an increase of nearly three million barrels per day within five years, accounting for over 90% of new crude oil growth. Such growth has transformed the U.S. from the world’s largest importer to a growing exporter of petroleum products, reducing its dependence on OPEC by more than half, rendering it a major competitor to Russia in refined product exports, and promising energy self-sufficiency for North America in coming decades
Recommended from our members
Isolating adverse effects of glucocorticoids on the embryonic cardiovascular system
Antenatal glucocorticoid therapy reduces mortality in the preterm infant, but evidence suggests off-target adverse effects on the developing cardiovascular system. Whether deleterious effects are direct on the offspring or secondary to alterations in utero-placental physiology is unclear. Here, we isolated direct effects of glucocorticoids using the chicken embryo, a model system in which the effects on the developing heart and circulation of therapy can be investigated, independent of effects on the mother and/or the placenta. Fertilized chicken eggs were incubated and divided randomly into control or dexamethasone treatment at day 14 out of the 21-day incubation period. Combining functional experiments at the isolated organ, cellular and molecular levels, embryos were then studied close to term. Chicken embryos exposed to dexamethasone were growth restricted and showed systolic and diastolic dysfunction, with an increase in cardiomyocyte volume but decreased cardiomyocyte nuclear density in the left ventricle. Underlying mechanisms included a premature switch from tissue accretion to differentiation, increased oxidative stress and activated signalling of cellular senescence. These findings therefore demonstrate that dexamethasone treatment can have direct detrimental off-target effects on the cardiovascular system in the developing embryo, which are independent of effects on the mother and/or placenta.The British Heart Foundation
The Wellcome Trus