294 research outputs found

    Control of Probabilistic Systems under Dynamic, Partially Known Environments with Temporal Logic Specifications

    Get PDF
    We consider the synthesis of control policies for probabilistic systems, modeled by Markov decision processes, operating in partially known environments with temporal logic specifications. The environment is modeled by a set of Markov chains. Each Markov chain describes the behavior of the environment in each mode. The mode of the environment, however, is not known to the system. Two control objectives are considered: maximizing the expected probability and maximizing the worst-case probability that the system satisfies a given specification

    Incremental Sampling-based Algorithms for Optimal Motion Planning

    Full text link
    During the last decade, incremental sampling-based motion planning algorithms, such as the Rapidly-exploring Random Trees (RRTs) have been shown to work well in practice and to possess theoretical guarantees such as probabilistic completeness. However, no theoretical bounds on the quality of the solution obtained by these algorithms have been established so far. The first contribution of this paper is a negative result: it is proven that, under mild technical conditions, the cost of the best path in the RRT converges almost surely to a non-optimal value. Second, a new algorithm is considered, called the Rapidly-exploring Random Graph (RRG), and it is shown that the cost of the best path in the RRG converges to the optimum almost surely. Third, a tree version of RRG is introduced, called the RRTβˆ—^* algorithm, which preserves the asymptotic optimality of RRG while maintaining a tree structure like RRT. The analysis of the new algorithms hinges on novel connections between sampling-based motion planning algorithms and the theory of random geometric graphs. In terms of computational complexity, it is shown that the number of simple operations required by both the RRG and RRTβˆ—^* algorithms is asymptotically within a constant factor of that required by RRT.Comment: 20 pages, 10 figures, this manuscript is submitted to the International Journal of Robotics Research, a short version is to appear at the 2010 Robotics: Science and Systems Conference

    Asymptotically Optimal Algorithms for Pickup and Delivery Problems with Application to Large-Scale Transportation Systems

    Full text link
    The Stacker Crane Problem is NP-Hard and the best known approximation algorithm only provides a 9/5 approximation ratio. The objective of this paper is threefold. First, by embedding the problem within a stochastic framework, we present a novel algorithm for the SCP that: (i) is asymptotically optimal, i.e., it produces, almost surely, a solution approaching the optimal one as the number of pickups/deliveries goes to infinity; and (ii) has computational complexity O(n^{2+\eps}), where nn is the number of pickup/delivery pairs and \eps is an arbitrarily small positive constant. Second, we asymptotically characterize the length of the optimal SCP tour. Finally, we study a dynamic version of the SCP, whereby pickup and delivery requests arrive according to a Poisson process, and which serves as a model for large-scale demand-responsive transport (DRT) systems. For such a dynamic counterpart of the SCP, we derive a necessary and sufficient condition for the existence of stable vehicle routing policies, which depends only on the workspace geometry, the stochastic distributions of pickup and delivery points, the arrival rate of requests, and the number of vehicles. Our results leverage a novel connection between the Euclidean Bipartite Matching Problem and the theory of random permutations, and, for the dynamic setting, exhibit novel features that are absent in traditional spatially-distributed queueing systems.Comment: 27 pages, plus Appendix, 7 figures, extended version of paper being submitted to IEEE Transactions of Automatic Contro

    Landmark Guided Probabilistic Roadmap Queries

    Full text link
    A landmark based heuristic is investigated for reducing query phase run-time of the probabilistic roadmap (\PRM) motion planning method. The heuristic is generated by storing minimum spanning trees from a small number of vertices within the \PRM graph and using these trees to approximate the cost of a shortest path between any two vertices of the graph. The intermediate step of preprocessing the graph increases the time and memory requirements of the classical motion planning technique in exchange for speeding up individual queries making the method advantageous in multi-query applications. This paper investigates these trade-offs on \PRM graphs constructed in randomized environments as well as a practical manipulator simulation.We conclude that the method is preferable to Dijkstra's algorithm or the Aβˆ—{\rm A}^* algorithm with conventional heuristics in multi-query applications.Comment: 7 Page

    Asymptotic constant-factor approximation algorithm for the Traveling Salesperson Problem for Dubins' vehicle

    Full text link
    This article proposes the first known algorithm that achieves a constant-factor approximation of the minimum length tour for a Dubins' vehicle through nn points on the plane. By Dubins' vehicle, we mean a vehicle constrained to move at constant speed along paths with bounded curvature without reversing direction. For this version of the classic Traveling Salesperson Problem, our algorithm closes the gap between previously established lower and upper bounds; the achievable performance is of order n2/3n^{2/3}
    • …
    corecore