294 research outputs found
Control of Probabilistic Systems under Dynamic, Partially Known Environments with Temporal Logic Specifications
We consider the synthesis of control policies for probabilistic systems,
modeled by Markov decision processes, operating in partially known environments
with temporal logic specifications. The environment is modeled by a set of
Markov chains. Each Markov chain describes the behavior of the environment in
each mode. The mode of the environment, however, is not known to the system.
Two control objectives are considered: maximizing the expected probability and
maximizing the worst-case probability that the system satisfies a given
specification
Incremental Sampling-based Algorithms for Optimal Motion Planning
During the last decade, incremental sampling-based motion planning
algorithms, such as the Rapidly-exploring Random Trees (RRTs) have been shown
to work well in practice and to possess theoretical guarantees such as
probabilistic completeness. However, no theoretical bounds on the quality of
the solution obtained by these algorithms have been established so far. The
first contribution of this paper is a negative result: it is proven that, under
mild technical conditions, the cost of the best path in the RRT converges
almost surely to a non-optimal value. Second, a new algorithm is considered,
called the Rapidly-exploring Random Graph (RRG), and it is shown that the cost
of the best path in the RRG converges to the optimum almost surely. Third, a
tree version of RRG is introduced, called the RRT algorithm, which
preserves the asymptotic optimality of RRG while maintaining a tree structure
like RRT. The analysis of the new algorithms hinges on novel connections
between sampling-based motion planning algorithms and the theory of random
geometric graphs. In terms of computational complexity, it is shown that the
number of simple operations required by both the RRG and RRT algorithms is
asymptotically within a constant factor of that required by RRT.Comment: 20 pages, 10 figures, this manuscript is submitted to the
International Journal of Robotics Research, a short version is to appear at
the 2010 Robotics: Science and Systems Conference
Asymptotically Optimal Algorithms for Pickup and Delivery Problems with Application to Large-Scale Transportation Systems
The Stacker Crane Problem is NP-Hard and the best known approximation
algorithm only provides a 9/5 approximation ratio. The objective of this paper
is threefold. First, by embedding the problem within a stochastic framework, we
present a novel algorithm for the SCP that: (i) is asymptotically optimal,
i.e., it produces, almost surely, a solution approaching the optimal one as the
number of pickups/deliveries goes to infinity; and (ii) has computational
complexity O(n^{2+\eps}), where is the number of pickup/delivery pairs
and \eps is an arbitrarily small positive constant. Second, we asymptotically
characterize the length of the optimal SCP tour. Finally, we study a dynamic
version of the SCP, whereby pickup and delivery requests arrive according to a
Poisson process, and which serves as a model for large-scale demand-responsive
transport (DRT) systems. For such a dynamic counterpart of the SCP, we derive a
necessary and sufficient condition for the existence of stable vehicle routing
policies, which depends only on the workspace geometry, the stochastic
distributions of pickup and delivery points, the arrival rate of requests, and
the number of vehicles. Our results leverage a novel connection between the
Euclidean Bipartite Matching Problem and the theory of random permutations,
and, for the dynamic setting, exhibit novel features that are absent in
traditional spatially-distributed queueing systems.Comment: 27 pages, plus Appendix, 7 figures, extended version of paper being
submitted to IEEE Transactions of Automatic Contro
Landmark Guided Probabilistic Roadmap Queries
A landmark based heuristic is investigated for reducing query phase run-time
of the probabilistic roadmap (\PRM) motion planning method. The heuristic is
generated by storing minimum spanning trees from a small number of vertices
within the \PRM graph and using these trees to approximate the cost of a
shortest path between any two vertices of the graph. The intermediate step of
preprocessing the graph increases the time and memory requirements of the
classical motion planning technique in exchange for speeding up individual
queries making the method advantageous in multi-query applications. This paper
investigates these trade-offs on \PRM graphs constructed in randomized
environments as well as a practical manipulator simulation.We conclude that the
method is preferable to Dijkstra's algorithm or the algorithm with
conventional heuristics in multi-query applications.Comment: 7 Page
Asymptotic constant-factor approximation algorithm for the Traveling Salesperson Problem for Dubins' vehicle
This article proposes the first known algorithm that achieves a
constant-factor approximation of the minimum length tour for a Dubins' vehicle
through points on the plane. By Dubins' vehicle, we mean a vehicle
constrained to move at constant speed along paths with bounded curvature
without reversing direction. For this version of the classic Traveling
Salesperson Problem, our algorithm closes the gap between previously
established lower and upper bounds; the achievable performance is of order
- β¦