46 research outputs found
Influence of the magnetic field on the plasmonic properties of transparent Ni anti-dot arrays
Extraordinary optical transmission is observed due to the excitation of
surface plasmon polaritons (SPPs) in 2-Dimensional hexagonal anti-dot patterns
of pure Ni thin films, grown on sapphire substrates. A strong enhancement of
the polar Kerr rotation is recorded at the surface plasmon related transmission
maximum. Angular resolved reflectivity measurements under an applied field,
reveal an enhancement and a shift of the normalized reflectivity difference
upon reversal of the magnetic saturation (transverse magneto-optical Kerr
effect-TMOKE). The change of the TMOKE signal clearly shows the magnetic field
modulation of the dispersion relation of SPPs launched in a 2D patterned
ferromagnetic Ni film
Surface plasmons and magneto-optic activity in hexagonal Ni anti-dot arrays
The influence of surface plasmons on the magneto-optic activity in a two-dimensional hexagonal array is addressed. The experiments were performed using hexagonal array of circular holes in a ferromagnetic Ni film. Well pronounced troughs are observed in the optical reflectivity, resulting from the presence of surface plasmons. The surface plasmons are found to strongly enhance the magneto-optic response (Kerr rotation), as compared to a continuous film of the same composition. The influence of the hexagonal symmetry of the pattern on the coupling between the plasmonic excitations is demonstrated, using optical diffraction measurements and theoretical calculations of the magneto-optic and of the angular dependence of the optical activity
О некоторых мерах государственной поддержки субъектов сельскохозяйственной деятельности в рамках интеграционных процессов
Материалы IX Междунар. науч.-практ. конф., Гомель, 26-27 ноября 2015
Subsequent Event Risk in Individuals with Established Coronary Heart Disease:Design and Rationale of the GENIUS-CHD Consortium
BACKGROUND:
The "GENetIcs of sUbSequent Coronary Heart Disease" (GENIUS-CHD) consortium was established to facilitate discovery and validation of genetic variants and biomarkers for risk of subsequent CHD events, in individuals with established CHD.
METHODS:
The consortium currently includes 57 studies from 18 countries, recruiting 185,614 participants with either acute coronary syndrome, stable CHD or a mixture of both at baseline. All studies collected biological samples and followed-up study participants prospectively for subsequent events.
RESULTS:
Enrollment into the individual studies took place between 1985 to present day with duration of follow up ranging from 9 months to 15 years. Within each study, participants with CHD are predominantly of self-reported European descent (38%-100%), mostly male (44%-91%) with mean ages at recruitment ranging from 40 to 75 years. Initial feasibility analyses, using a federated analysis approach, yielded expected associations between age (HR 1.15 95% CI 1.14-1.16) per 5-year increase, male sex (HR 1.17, 95% CI 1.13-1.21) and smoking (HR 1.43, 95% CI 1.35-1.51) with risk of subsequent CHD death or myocardial infarction, and differing associations with other individual and composite cardiovascular endpoints.
CONCLUSIONS:
GENIUS-CHD is a global collaboration seeking to elucidate genetic and non-genetic determinants of subsequent event risk in individuals with established CHD, in order to improve residual risk prediction and identify novel drug targets for secondary prevention. Initial analyses demonstrate the feasibility and reliability of a federated analysis approach. The consortium now plans to initiate and test novel hypotheses as well as supporting replication and validation analyses for other investigators
Genome-wide analysis yields new loci associating with aortic valve stenosis
Aortic valve stenosis (AS) is the most common valvular heart disease, and valve replacement is the only definitive treatment. Here we report a large genome-wide association (GWA) study of 2,457 Icelandic AS cases and 349,342 controls with a follow-up in up to 4,850 cases and 451,731 controls of European ancestry. We identify two new AS loci, on chromosome 1p21 near PALMD (rs7543130; odds ratio (OR) = 1.20, P = 1.2 × 10−22) and on chromosome 2q22 in TEX41 (rs1830321; OR = 1.15, P = 1.8 × 10−13). Rs7543130 also associates with bicuspid aortic valve (BAV) (OR = 1.28, P = 6.6 × 10−10) and aortic root diameter (P = 1.30 × 10−8), and rs1830321 associates with BAV (OR = 1.12, P = 5.3 × 10−3) and coronary artery disease (OR = 1.05, P = 9.3 × 10−5). The results implicate both cardiac developmental abnormalities and atherosclerosis-like processes in the pathogenesis of AS. We show that several pathways are shared by CAD and AS. Causal analysis suggests that the shared risk factors of Lp(a) and non-high-density lipoprotein cholesterol contribute substantially to the frequent co-occurence of these diseases
New genetic loci link adipose and insulin biology to body fat distribution.
Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms
Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes
To extend understanding of the genetic architecture and molecular basis of type 2 diabetes (T2D), we conducted a meta-analysis of genetic variants on the Metabochip involving 34,840 cases and 114,981 controls, overwhelmingly of European descent. We identified ten previously unreported T2D susceptibility loci, including two demonstrating sex-differentiated association. Genome-wide analyses of these data are consistent with a long tail of further common variant loci explaining much of the variation in susceptibility to T2D. Exploration of the enlarged set of susceptibility loci implicates several processes, including CREBBP-related transcription, adipocytokine signalling and cell cycle regulation, in diabetes pathogenesis
Genetic insights into resting heart rate and its role in cardiovascular disease
Resting heart rate is associated with cardiovascular diseases and mortality in observational and Mendelian randomization studies. The aims of this study are to extend the number of resting heart rate associated genetic variants and to obtain further insights in resting heart rate biology and its clinical consequences. A genome-wide meta-analysis of 100 studies in up to 835,465 individuals reveals 493 independent genetic variants in 352 loci, including 68 genetic variants outside previously identified resting heart rate associated loci. We prioritize 670 genes and in silico annotations point to their enrichment in cardiomyocytes and provide insights in their ECG signature. Two-sample Mendelian randomization analyses indicate that higher genetically predicted resting heart rate increases risk of dilated cardiomyopathy, but decreases risk of developing atrial fibrillation, ischemic stroke, and cardio-embolic stroke. We do not find evidence for a linear or non-linear genetic association between resting heart rate and all-cause mortality in contrast to our previous Mendelian randomization study. Systematic alteration of key differences between the current and previous Mendelian randomization study indicates that the most likely cause of the discrepancy between these studies arises from false positive findings in previous one-sample MR analyses caused by weak-instrument bias at lower P-value thresholds. The results extend our understanding of resting heart rate biology and give additional insights in its role in cardiovascular disease development
Game development using open source software
A lot of small game studios and independent game developers have a tight budget when they are creating something new and necessarily cannot afford expensive software licenses for development. The general purpose of this thesis is to describe and analyze the development process of a video game by only using free open source software. The problems that are researched in this thesis are the following: can the reader use the very same techniques and tools that are being used in this thesis and how viable is the workflow between the software for development. The thesis starts by explaining the goals, background and the general gameplay elements that the practical part of this thesis contains. It then proceeds by explaining how the three-dimensional models were constructed and animated in Blender but also some basic model making theory that can be applied in any project. It also talks about GIMP and how that particular software can be used to create textures and effects. Since games are audiovisual experiences, the thesis continues by describing the audio design workflow in Audacity and LMMS softwares. Finally, the thesis wraps up everything by explaining how everything is tied together in the Godot game engine using both C# code and the tools and classes that are available in the game engine. The final result is a fully-fledged completely playable and entertaining video game