16 research outputs found
The Role of Membrane Excitability in Insulin Regulation
In mammals, ATP-sensitive K+ (KATP) channels are essential regulators of insulin secretion from pancreatic islet [beta]-cells, illustrated by the finding that gain-of-function mutations in KATP channels (KATP-GOF) cause neonatal diabetes mellitus (NDM). However, variability in symptom severity and effectiveness of treatment is seen in NDM, even for those with the same mutation and in the same family. Short-term treatment of mice expressing KATP-GOF mutations in [beta]-cells (KATP-GOF mice) with the KATP blocker glibenclamide during disease onset results in two outcomes: one subset becomes severely diabetic (non-remitters), whereas the other subset remains below the glucose levels at which significant side effects occur (remitters). Remitters and non-remitters do not differ in insulin sensitivity early in the induction process, but remitter mice have lower levels of the inflammatory cytokines TNF-[alpha] and IL-6, as well as liver glucose production, suggesting roles for gluconeogenesis and inflammation in the pathogenesis of NDM.
Whether KATP Фependent excitability is relevant to insulin secretory control in non-mammalian vertebrates is unclear. I have shown that zebrafish islet [beta]-cells express functional KATP channels, that these channels have similar properties to their mammalian orthologues, and that they regulate intracellular calcium and glucose homeostasis in zebrafish. Further, I have shown that zebrafish with inducible, [beta]-cell specific KATP-GOF mutations recapitulate loss of glucose-induced calcium response, severe hyperglycemia, and growth defects. These findings will inform studies of metabolism in zebrafish and enable the use of zebrafish for larger-scale studies of NDM to identify unknown modifiers regulating responses to [beta]-cell membrane inexcitability
Expression and function of ATP-dependent potassium channels in zebrafish islet β-cells
ATP-sensitive potassium channels (K(ATP) channels) are critical nutrient sensors in many mammalian tissues. In the pancreas, K(ATP) channels are essential for coupling glucose metabolism to insulin secretion. While orthologous genes for many components of metabolism–secretion coupling in mammals are present in lower vertebrates, their expression, functionality and ultimate impact on body glucose homeostasis are unclear. In this paper, we demonstrate that zebrafish islet β-cells express functional K(ATP) channels of similar subunit composition, structure and metabolic sensitivity to their mammalian counterparts. We further show that pharmacological activation of native zebrafish K(ATP) using diazoxide, a specific K(ATP) channel opener, is sufficient to disturb glucose tolerance in adult zebrafish. That β-cell K(ATP) channel expression and function are conserved between zebrafish and mammals illustrates the evolutionary conservation of islet metabolic sensing from fish to humans, and lends relevance to the use of zebrafish to model islet glucose sensing and diseases of membrane excitability such as neonatal diabetes
Complex consequences of Cantu syndrome SUR2 variant R1154Q in genetically modified mice
Cantu syndrome (CS) is caused by gain-of-function (GOF) mutations in pore-forming (Kir6.1, KCNJ8) and accessory (SUR2, ABCC9) ATP-sensitive potassium (KATP) channel subunits, the most common mutations being SUR2[R1154Q] and SUR2[R1154W], carried by approximately 30% of patients. We used CRISPR/Cas9 genome engineering to introduce the equivalent of the human SUR2[R1154Q] mutation into the mouse ABCC9 gene. Along with minimal CS disease features, R1154Q cardiomyocytes and vascular smooth muscle showed much lower KATP current density and pinacidil activation than WT cells. Almost complete loss of SUR2-dependent protein and KATP in homozygous R1154Q ventricles revealed underlying diazoxide-sensitive SUR1-dependent KATP channel activity. Surprisingly, sequencing of SUR2 cDNA revealed 2 distinct transcripts, one encoding full-length SUR2 protein; and the other with an in-frame deletion of 93 bases (corresponding to 31 amino acids encoded by exon 28) that was present in approximately 40% and approximately 90% of transcripts from hetero- and homozygous R1154Q tissues, respectively. Recombinant expression of SUR2A protein lacking exon 28 resulted in nonfunctional channels. CS tissue from SUR2[R1154Q] mice and human induced pluripotent stem cell-derived (hiPSC-derived) cardiomyocytes showed only full-length SUR2 transcripts, although further studies will be required in order to fully test whether SUR2[R1154Q] or other CS mutations might result in aberrant splicing and variable expressivity of disease features in human CS
Obesity and altered glucose metabolism impact HDL composition in CETP transgenic mice: a role for ovarian hormones
Mechanisms underlying changes in HDL composition caused by obesity are poorly defined, partly because mice lack expression of cholesteryl ester transfer protein (CETP), which shuttles triglyceride and cholesteryl ester between lipoproteins. Because menopause is associated with weight gain, altered glucose metabolism, and changes in HDL, we tested the effect of feeding a high-fat diet (HFD) and ovariectomy (OVX) on glucose metabolism and HDL composition in CETP transgenic mice. After OVX, female CETP-expressing mice had accelerated weight gain with HFD-feeding and impaired glucose tolerance by hyperglycemic clamp techniques, compared with OVX mice fed a low-fat diet (LFD). Sham-operated mice (SHAM) did not show HFD-induced weight gain and had less glucose intolerance than OVX mice. Using shotgun HDL proteomics, HFD-feeding in OVX mice had a large effect on HDL composition, including increased levels of apoA2, apoA4, apoC2, and apoC3, proteins involved in TG metabolism. These changes were associated with decreased hepatic expression of SR-B1, ABCA1, and LDL receptor, proteins involved in modulating the lipid content of HDL. In SHAM mice, there were minimal changes in HDL composition with HFD feeding. These studies suggest that the absence of ovarian hormones negatively influences the response to high-fat feeding in terms of glucose tolerance and HDL composition. CETP-expressing mice may represent a useful model to define how metabolic changes affect HDL composition and function
Recommended from our members
Identification of genetic drivers of plasma lipoprotein size in the Diversity Outbred mouse population.
Despite great progress in understanding lipoprotein physiology, there is still much to be learned about the genetic drivers of lipoprotein abundance, composition, and function. We used ion mobility spectrometry to survey 16 plasma lipoprotein subfractions in 500 Diversity Outbred mice maintained on a Western-style diet. We identified 21 quantitative trait loci (QTL) affecting lipoprotein abundance. To refine the QTL and link them to disease risk in humans, we asked if the human homologs of genes located at each QTL were associated with lipid traits in human genome-wide association studies. Integration of mouse QTL with human genome-wide association studies yielded candidate gene drivers for 18 of the 21 QTL. This approach enabled us to nominate the gene encoding the neutral ceramidase, Asah2, as a novel candidate driver at a QTL on chromosome 19 for large HDL particles (HDL-2b). To experimentally validate Asah2, we surveyed lipoproteins in Asah2-/- mice. Compared to wild-type mice, female Asah2-/- mice showed an increase in several lipoproteins, including HDL. Our results provide insights into the genetic regulation of circulating lipoproteins, as well as mechanisms by which lipoprotein subfractions may affect cardiovascular disease risk in humans
Data from: Expression and function of ATP-dependent potassium channels in zebrafish islet β-cells
ATP-sensitive potassium channels (KATP channels) are critical nutrient sensors in many mammalian tissues. In the pancreas, KATP channels are essential for coupling glucose metabolism to insulin secretion. While orthologous genes for many components of metabolism–secretion coupling in mammals are present in lower vertebrates, their expression, functionality and ultimate impact on body glucose homeostasis are unclear. In this paper, we demonstrate that zebrafish islet β-cells express functional KATP channels of similar subunit composition, structure and metabolic sensitivity to their mammalian counterparts. We further show that pharmacological activation of native zebrafish KATP using diazoxide, a specific KATP channel opener, is sufficient to disturb glucose tolerance in adult zebrafish. That β-cell KATP channel expression and function are conserved between zebrafish and mammals illustrates the evolutionary conservation of islet metabolic sensing from fish to humans, and lends relevance to the use of zebrafish to model islet glucose sensing and diseases of membrane excitability such as neonatal diabetes