3,309 research outputs found

    Finite temperature Drude weight of the one dimensional spin 1/2 Heisenberg model}

    Full text link
    Using the Bethe ansatz method, the zero frequency contribution (Drude weight) to the spin current correlations is analyzed for the easy plane antiferromagnetic Heisenberg model. The Drude weight is a monotonically decreasing function of temperature for all 0<Delta< 1, it approaches the zero temperature value with a power law and it appears to vanish for all finite temperatures at the isotropic Delta=1 point.Comment: 5 pages, 2 Postscript figure

    Time evolution of a quantum many-body system: transition from integrability to ergodicity in thermodynamic limit

    Full text link
    Numerical evidence is given for non-ergodic (non-mixing) behavior, exhibiting ideal transport, of a simple non-integrable many-body quantum system in the thermodynamic limit, namely kicked tVt-V model of spinless fermions on a ring. However, for sufficiently large kick parameters tt and VV we recover quantum ergodicity, and normal transport, which can be described by random matrix theory.Comment: 4 pages in RevTex (6 figures in PostScript included

    In vivo characterization of distinct modality-specific subsets of somatosensory neurons using GCaMP

    Get PDF
    Mechanistic insights into pain pathways are essential for a rational approach to treating this vast and increasing clinical problem. Sensory neurons that respond to tissue damage (nociceptors) may evoke pain sensations and are typically classified on the basis of action potential velocity. Electrophysiological studies have suggested that most of the C-fiber nociceptors are polymodal, responding to a variety of insults. In contrast, gene deletion studies in the sensory neurons of transgenic mice have frequently resulted in modality-specific deficits. We have used an in vivo imaging approach using the genetically encoded fluorescent calcium indicator GCaMP to study the activity of dorsal root ganglion sensory neurons in live animals challenged with painful stimuli. Using this approach, we can visualize spatially distinct neuronal responses and find that >85% of responsive dorsal root ganglion neurons are modality-specific, responding to either noxious mechanical, cold, or heat stimuli. These observations are mirrored in behavioral studies of transgenic mice. For example, deleting sodium channel Nav1.8 silences mechanical- but not heat-sensing sensory neurons, consistent with behavioral deficits. In contrast, primary cultures of axotomized sensory neurons show high levels of polymodality. After intraplantar treatment with prostaglandin E2, neurons in vivo respond more intensely to noxious thermal and mechanical stimuli, and additional neurons (silent nociceptors) are unmasked. Together, these studies define polymodality as an infrequent feature of nociceptive neurons in normal animals

    Luther-Emery Stripes, RVB Spin Liquid Background and High Tc Superconductivity

    Full text link
    The stripe phase in high Tc cuprates is modeled as a single stripe coupled to the RVB spin liquid background by the single particle hopping process. In normal state, the strong pairing correlation inherent in RVB state is thus transfered into the Luttinger stripe and drives it toward spin-gap formation described by Luther-Emery Model. The establishment of global phase coherence in superconducting state contributes to a more relevant coupling to Luther-Emery Stripe and leads to gap opening in both spin and charge sectors. Physical consequences of the present picture are discussed, and emphasis is put on the unification of different energy scales relevant to cuprates, and good agreement is found with the available experimental results, especially in ARPES.Comment: 4 pages, RevTe

    Reduction of three-band model for copper oxides to single-band generalized t~-~J model

    Full text link
    A three-band model for copper oxides in the region of parameters where the second hole on the copper has energy close to the first hole on the oxygen is considered. The exact solution for one hole on a ferromagnetic background of the ordered copper spins is obtained. A general procedure for transformation of the primary Hamiltonian to the Hamiltonian of singlet and triplet excitations is proposed. Reduction of the singlet-triplet Hamiltonian to the single-band Hamiltonian of the generalized t~-~J model is performed. A comparison of the solution for the generalized t~-~J model on a ferromagnetic background with the exact solution shows a very good agreement.Comment: 20 pages (LATEX

    The Roton Fermi Liquid

    Full text link
    We introduce and analyze a novel metallic phase of two-dimensional (2d) electrons, the Roton Fermi Liquid (RFL), which, in contrast to the Landau Fermi liquid, supports both gapless fermionic and bosonic quasiparticle excitations. The RFL is accessed using a re-formulation of 2d electrons consisting of fermionic quasiparticles and hc/2ehc/2e vortices interacting with a mutual long-ranged statistical interaction. In the presence of a strong vortex-antivortex (i.e. roton) hopping term, the RFL phase emerges as an exotic yet eminently tractable new quantum ground state. The RFL phase exhibits a ``Bose surface'' of gapless roton excitations describing transverse current fluctuations, has off-diagonal quasi-long-ranged order (ODQLRO) at zero temperature (T=0), but is not superconducting, having zero superfluid density and no Meissner effect. The electrical resistance {\it vanishes} as T0T \to 0 with a power of temperature (and frequency), R(T)TγR(T) \sim T^\gamma (with γ>1\gamma >1), independent of the impurity concentration. The RFL phase also has a full Fermi surface of quasiparticle excitations just as in a Landau Fermi liquid. Electrons can, however, scatter anomalously from rotonic "current fluctuations'' and "superconducting fluctuations'', leading to "hot" and "cold" spots. Fermionic quasiparticles dominate the Hall electrical transport. We also discuss instabilities of the RFL to a conventional Fermi liquid and a superconductor. Precisely {\it at} the instability into the Fermi liquid state, the exponent γ=1\gamma =1, so that R(T)TR(T) \sim T. Upon entering the superconducting state the anomalous quasiparticle scattering is strongly suppressed. We discuss how the RFL phenomenology might apply to the cuprates.Comment: 43 page

    Delocalization in Coupled Luttinger Liquids with Impurities

    Full text link
    We study effects of quenched disorder on coupled two-dimensional arrays of Luttinger liquids (LL) as a model for stripes in high-T_c compounds. In the framework of a renormalization-group analysis, we find that weak inter-LL charge-density-wave couplings are always irrelevant as opposed to the pure system. By varying either disorder strength, intra- or inter-LL interactions, the system can undergo a delocalization transition between an insulator and a novel strongly anisotropic metallic state with LL-like transport. This state is characterized by short-ranged charge-density-wave order, the superconducting order is quasi long-ranged along the stripes and short-ranged in the transversal direction.Comment: 6 pages, 5 figures, substantially extended and revised versio

    Lithofacies uncertainty modeling in a siliciclastic reservoir setting by incorporating geological contacts and seismic information

    Get PDF
    Deterministic modeling lonely provides a unique boundary layout, depending on the geological interpretation or interpolation from the hard available data. Changing the interpreter’s attitude or interpolation parameters leads to displacing the location of these borders. In contrary, probabilistic modeling of geological domains such as lithofacies is a critical aspect to providing information to take proper decision in the case of evaluation of oil reservoirs parameters, that is, applicable for quantification of uncertainty along the boundaries. These stochastic modeling manifests itself dramatically beyond this occasion. Conventional approaches of probabilistic modeling (object and pixel-based) mostly suffers from consideration of contact knowledge on the simulated domains. Plurigaussian simulation algorithm, in contrast, allows reproducing the complex transitions among the lithofacies domains and has found wide acceptance for modeling petroleum reservoirs. Stationary assumption for this framework has implications on the homogeneous characterization of the lithofacies. In this case, the proportion is assumed constant and the covariance function as a typical feature of spatial continuity depends only on the Euclidean distances between two points. But, whenever there exists a heterogeneity phenomenon in the region, this assumption does not urge model to generate the desired variability of the underlying proportion of facies over the domain. Geophysical attributes as a secondary variable in this place, plays an important role for generation of the realistic contact relationship between the simulated categories. In this paper, a hierarchical plurigaussian simulation approach is used to construct multiple realizations of lithofacies by incorporating the acoustic impedance as soft data through an oil reservoir in Iran.This research was funded by the National Elites Foundation of Iran in collaboration with research Institute Petroleum of Industry in Iran under the project number of 9265005

    Nodal quasi-particles and coexisting orders in striped superconductors

    Full text link
    We study the properties of a quasi-one dimensional superconductor which consists of an alternating array of two inequivalent chains. This model is a simple charicature of a locally striped high temperature superconductor, and is more generally a theoretically controllable system in which the superconducting state emerges from a non-Fermi liquid normal state. Even in this limit, ``d-wave like'' order parameter symmetry is natural, but the superconducting state can either have a complete gap in the quasi-particle spectrum, or gapless ``nodal'' quasiparticles. We also find circumstances in which antiferromagnetic order (typically incommensurate) coexists with superconductivity.Comment: 4 pages, 1 figure, 1 table new version; vastly improved figure captio
    corecore