122 research outputs found

    Condition matters: pupil voices on the design and condition of secondary schools

    Get PDF
    This research was produced by Sheffield Hallam University. The project aimed to inform the creation of a national schools Facilities Management network and an ongoing programme to research and benchmark the impact of school condition and design on pupils

    Breakdown of scale-invariance in the coarsening of phase-separating binary fluids

    Full text link
    We present evidence, based on lattice Boltzmann simulations, to show that the coarsening of the domains in phase separating binary fluids is not a scale-invariant process. Moreover we emphasise that the pathway by which phase separation occurs depends strongly on the relation between diffusive and hydrodynamic time scales.Comment: 4 pages, Latex, 4 eps Figures included. (higher quality Figures can be obtained from [email protected]

    Lattice Boltzmann simulations of lamellar and droplet phases

    Full text link
    Lattice Boltzmann simulations are used to investigate spinodal decomposition in a two-dimensional binary fluid with equilibrium lamellar and droplet phases. We emphasise the importance of hydrodynamic flow to the phase separation kinetics. For mixtures slightly asymmetric in composition the fluid phase separates into bulk and lamellar phases with the lamellae forming distinctive spiral structures to minimise their elastic energy.Comment: 19 pages, 5 figure

    Three dimensional hysdrodynamic lattice-gas simulations of binary immiscible and ternary amphiphilic flow through porous media

    Full text link
    We report the results of a study of multiphase flow in porous media. A Darcy's law for steady multiphase flow was investigated for both binary and ternary amphiphilic flow. Linear flux-forcing relationships satisfying Onsager reciprocity were shown to be a good approximation of the simulation data. The dependence of the relative permeability coefficients on water saturation was investigated and showed good qualitative agreement with experimental data. Non-steady state invasion flows were investigated, with particular interest in the asymptotic residual oil saturation. The addition of surfactant to the invasive fluid was shown to significantly reduce the residual oil saturation.Comment: To appear in Phys. Rev.

    Modular symbols in Iwasawa theory

    Full text link
    This survey paper is focused on a connection between the geometry of GLd\mathrm{GL}_d and the arithmetic of GLd1\mathrm{GL}_{d-1} over global fields, for integers d2d \ge 2. For d=2d = 2 over Q\mathbb{Q}, there is an explicit conjecture of the third author relating the geometry of modular curves and the arithmetic of cyclotomic fields, and it is proven in many instances by the work of the first two authors. The paper is divided into three parts: in the first, we explain the conjecture of the third author and the main result of the first two authors on it. In the second, we explain an analogous conjecture and result for d=2d = 2 over Fq(t)\mathbb{F}_q(t). In the third, we pose questions for general dd over the rationals, imaginary quadratic fields, and global function fields.Comment: 43 page

    Lattice-Gas Simulations of Minority-Phase Domain Growth in Binary Immiscible and Ternary Amphiphilic Fluid

    Full text link
    We investigate the growth kinetics of binary immiscible fluids and emulsions in two dimensions using a hydrodynamic lattice-gas model. We perform off-critical quenches in the binary fluid case and find that the domain size within the minority phase grows algebraically with time in accordance with theoretical predictions. In the late time regime we find a growth exponent n = 0.45 over a wide range of concentrations, in good agreement with other simluations. In the early time regime we find no universal growth exponent but a strong dependence on the concentration of the minority phase. In the ternary amphiphilic fluid case the kinetics of self assembly of the droplet phase are studied for the first time. At low surfactant concentrations, we find that, after an early algebraic growth, a nucleation regime dominates the late-time kinetics, which is enhanced by an increasing concentration of surfactant. With a further increase in the concentration of surfactant, we see a crossover to logarithmically slow growth, and finally saturation of the oil droplets, which we fit phenomenologically to a stretched exponential function. Finally, the transition between the droplet and the sponge phase is studied.Comment: 22 pages, 13 figures, submitted to PR

    Lattice-gas simulations of Domain Growth, Saturation and Self-Assembly in Immiscible Fluids and Microemulsions

    Full text link
    We investigate the dynamical behavior of both binary fluid and ternary microemulsion systems in two dimensions using a recently introduced hydrodynamic lattice-gas model of microemulsions. We find that the presence of amphiphile in our simulations reduces the usual oil-water interfacial tension in accord with experiment and consequently affects the non-equilibrium growth of oil and water domains. As the density of surfactant is increased we observe a crossover from the usual two-dimensional binary fluid scaling laws to a growth that is {\it slow}, and we find that this slow growth can be characterized by a logarithmic time scale. With sufficient surfactant in the system we observe that the domains cease to grow beyond a certain point and we find that this final characteristic domain size is inversely proportional to the interfacial surfactant concentration in the system.Comment: 28 pages, latex, embedded .eps figures, one figure is in colour, all in one uuencoded gzip compressed tar file, submitted to Physical Review

    Numerical simulations of complex fluid-fluid interface dynamics

    Get PDF
    Interfaces between two fluids are ubiquitous and of special importance for industrial applications, e.g., stabilisation of emulsions. The dynamics of fluid-fluid interfaces is difficult to study because these interfaces are usually deformable and their shapes are not known a priori. Since experiments do not provide access to all observables of interest, computer simulations pose attractive alternatives to gain insight into the physics of interfaces. In the present article, we restrict ourselves to systems with dimensions comparable to the lateral interface extensions. We provide a critical discussion of three numerical schemes coupled to the lattice Boltzmann method as a solver for the hydrodynamics of the problem: (a) the immersed boundary method for the simulation of vesicles and capsules, the Shan-Chen pseudopotential approach for multi-component fluids in combination with (b) an additional advection-diffusion component for surfactant modelling and (c) a molecular dynamics algorithm for the simulation of nanoparticles acting as emulsifiers.Comment: 24 pages, 12 figure
    corecore