4 research outputs found

    Highly Enhanced Affinity of Multidentate versus Bidentate Zwitterionic Ligands for Long-Term Quantum Dot Bioimaging

    No full text
    High colloidal stability in aqueous conditions is a prerequisite for fluorescent nanocrystals, otherwise known as “quantum dots”, intended to be used in any long-term bioimaging experiment. This essential property implies a strong affinity between the nanoparticles themselves and the ligands they are coated with. To further improve the properties of the bidentate monozwitterionic ligand previously developed in our team, we synthesized a multidentate polyzwitterionic ligand, issued from the copolymerization of a bidentate monomer and a monozwitterionic one. The nanocrystals passivated by this polymeric ligand showed an exceptional colloidal stability, regardless of the medium conditions (pH, salinity, dilution, and biological environment), and we demonstrated the affinity of the polymer exceeded by 3 orders of magnitude that of the bidentate ligand (desorption rates assessed by a competition experiment). The synthesis of the multidentate polyzwitterionic ligand proved also to be easily tunable and allowed facile functionalization of the corresponding quantum dots, which led to successful specific biomolecules targeting

    Sulfobetaine–Vinylimidazole Block Copolymers: A Robust Quantum Dot Surface Chemistry Expanding Bioimaging’s Horizons

    No full text
    Long-term inspection of biological phenomena requires probes of elevated intra- and extracellular stability and target biospecificity. The high fluorescence and photostability of quantum dot (QD) nanoparticles contributed to foster their promise as bioimaging tools that could overcome limitations associated with traditional fluorophores. However, QDs’ potential as a bioimaging platform relies upon a precise control over the surface chemistry modifications of these nano-objects. Here, a zwitterion–vinylimidazole block copolymer ligand was synthesized, which regroups all anchoring groups in one compact terminal block, while the rest of the chain is endowed with antifouling and bioconjugation moieties. By further application of an oriented bioconjugation approach with whole IgG antibodies, QD nanobioconjugates were obtained that display outstanding intra- and extracellular stability as well as biorecognition capacity. Imaging the internalization and intracellular dynamics of a transmembrane cell receptor, the CB1 brain cannabinoid receptor, both in HEK293 cells and in neurons, illustrates the breadth of potential applications of these nanoprobes

    Oriented Bioconjugation of Unmodified Antibodies to Quantum Dots Capped with Copolymeric Ligands as Versatile Cellular Imaging Tools

    No full text
    Distinctive optical properties of inorganic quantum dot (QD) nanoparticles promise highly valuable probes for fluorescence-based detection methods, particularly for in vivo diagnostics, cell phenotyping via multiple markers or single molecule tracking. However, despite high hopes, this promise has not been fully realized yet, mainly due to difficulties at producing stable, nontoxic QD bioconjugates of negligible nonspecific binding. Here, a universal platform for antibody binding to QDs is presented that builds upon the controlled functionalization of CdSe/CdS/ZnS nanoparticles capped with a multidentate dithiol/zwitterion copolymer ligand. In a change-of-paradigm approach, thiol groups are concomitantly used as anchoring and bioconjugation units to covalently bind up to 10 protein A molecules per QD while preserving their long-term colloidal stability. Protein A conjugated to QDs then enables the oriented, stoichiometrically controlled immobilization of whole, unmodified antibodies by simple incubation. This QD–protein A immobilization platform displays remarkable antibody functionality retention after binding, usually a compromised property in antibody conjugation to surfaces. Typical QD–protein A–antibody assemblies contain about three fully functional antibodies. Validation experiments show that these nanobioconjugates overcome current limitations since they retain their colloidal stability and antibody functionality over 6 months, exhibit low nonspecific interactions with live cells and have very low toxicity: after 48 h incubation with 1 ÎŒM QD bioconjugates, HeLa cells retain more than 80% of their cellular metabolism. Finally, these QD nanobioconjugates possess a high specificity for extra- and intracellular targets in live and fixed cells. The dithiol/zwitterion QD–protein A nanoconjugates have thus a latent potential to become an off-the-shelf tool destined to unresolved biological questions

    Influence of Luminescence Quantum Yield, Surface Coating, and Functionalization of Quantum Dots on the Sensitivity of Time-Resolved FRET Bioassays

    No full text
    In clinical diagnostics, homogeneous time-resolved (TR) FRET immunoassays are used for fast and highly sensitive detection of biomarkers in serum samples. The most common immunoassay format is based on europium chelate or cryptate donors and allophycocyanin acceptors. Replacing europium donors with terbium complexes and the acceptors with QDs offers large photophysical advantages for multiplexed diagnostics, because the Tb-complex can be used as FRET donor for QD acceptors of different colors. Water-soluble and biocompatible QDs are commercially available or can be synthesized in the laboratory using many available recipes from the literature. Apart from the semiconductor material composition, an important aspect of choosing the right QD for TR-FRET assays is the thickness of the QD coating, which will influence the photophysical properties and long-term stability as well as the donor–acceptor distance and FRET efficiency. Here we present a detailed time-resolved spectroscopic study of three different QDs with an emission maximum around 605 nm for their application as FRET acceptors (using a common Tb donor) in TR-bioassays: (i) Invitrogen/Life Technologies Qdot605, (ii) eBioscience eFluorNC605 and iii) ter-polymer stabilized CdSe/CdS/ZnS QDs synthesized in our laboratories. All FRET systems are very stable and possess large Förster distances (7.4–9.1 nm), high FRET efficiencies (0.63–0.80) and low detection limits (0.06–2.0 pM) within the FRET-bioassays. Shapes, sizes and the biotin/QD ratio of the biocompatible QDs could be determined directly in the solution phase bioassays at subnanomolar concentrations. Both commercial amphiphilic polymer/lipid encapsulated QDs and self-made ligand-exchanged QDs provide extremely low detection limits for highly sensitive TR-FRET bioassays
    corecore