7,707 research outputs found

    Persistence Modules on Commutative Ladders of Finite Type

    Full text link
    We study persistence modules defined on commutative ladders. This class of persistence modules frequently appears in topological data analysis, and the theory and algorithm proposed in this paper can be applied to these practical problems. A new algebraic framework deals with persistence modules as representations on associative algebras and the Auslander-Reiten theory is applied to develop the theoretical and algorithmic foundations. In particular, we prove that the commutative ladders of length less than 5 are representation-finite and explicitly show their Auslander-Reiten quivers. Furthermore, a generalization of persistence diagrams is introduced by using Auslander-Reiten quivers. We provide an algorithm for computing persistence diagrams for the commutative ladders of length 3 by using the structure of Auslander-Reiten quivers.Comment: 48 page

    The On The Fly Imaging Technique

    Full text link
    The On-The-Fly (OTF) imaging technique enables single-dish radio telescopes to construct images of small areas of the sky with greater efficiency and accuracy. This paper describes the practical application of the OTF imaging technique. By way of example the implementation of the OTF imaging technique at the NRAO 12 Meter Telescope is described. Specific requirements for data sampling, image formation, and Doppler correction are discussed.Comment: 10 pages, 13 figures, accepted A&

    The 125 GeV boson: A composite scalar?

    Full text link
    Assuming that the 125 GeV particle observed at the LHC is a composite scalar and responsible for the electroweak gauge symmetry breaking, we consider the possibility that the bound state is generated by a non-Abelian gauge theory with dynamically generated gauge boson masses and a specific chiral symmetry breaking dynamics motivated by confinement. The scalar mass is computed with the use of the Bethe-Salpeter equation and its normalization condition as a function of the SU(N) group and the respective fermionic representation. If the fermions that form the composite state are in the fundamental representation of the SU(N) group, we can generate such light boson only for one specific number of fermions for each group. In the case of small groups, like SU(2) to SU(5), and two fermions in the adjoint representation we find that is quite improbable to generate such light composite scalar.Comment: 24 pages, 5 figures, discussion extended, references added; version to appear in Phys. Rev.
    • …
    corecore