23 research outputs found
Identifying Proteins of High Designability via Surface-Exposure Patterns
Using an off-lattice model, we fully enumerate folded conformations of
polypeptide chains of up to N = 19 monomers. Structures are found to differ
markedly in designability, defined as the number of sequences with that
structure as a unique lowest-energy conformation. We find that designability is
closely correlated with the pattern of surface exposure of the folded
structure. For longer chains, complete enumeration of structures is
impractical. Instead, structures can be randomly sampled, and relative
designability estimated either from designability within the random sample, or
directly from surface-exposure pattern. We compare the surface-exposure
patterns of those structures identified as highly designable to the patterns of
naturally occurring proteins.Comment: 17 pages, 12 figure
Molecular Spintronics: Spin-Dependent Electron Transport in Molecular Wires
We present a theoretical study of spin-dependent transport through molecular
wires bridging ferromagnetic metal nanocontacts. We extend to magnetic systems
a recently proposed model that provides a em quantitative explanation of the
conductance measurements of Reed et al. on Au break-junctions bridged by
self-assembled molecular monolayers (SAMs) of 1,4-benzene-dithiolate (BDT)
molecules. Based on our calculations, we predict that spin-valve behavior
should be observable in nickel break-junctions bridged by SAM's formed from
BDT. We also consider spin transport in systems consisting of a clean
ferromagnetic nickel STM tip and SAMs of benzene-thiol molecules on gold and
nickel substrates. We find that spin-valve behavior should be possible for the
Ni substrate. For the case where the substrate is gold, we show that it should
be possible to inject a highly spin-polarized current into the substrate.Comment: 14 pages, 9 figure
The Smallest Molecular Switch
Ab-initio total energy calculations reveal benzene-dithiolate (BDT) molecules
on a gold surface, contacted by a monoatomic gold STM tip to have two classes
of low energy conformations with differing symmetries. Lateral motion of the
tip or excitation of the molecule cause it to change from one conformation
class to the other and to switch between a strongly and a weakly conducting
state. Thus, surprisingly, despite their apparent simplicity these Au/BDT/Au
nanowires are shown to be electrically bi-stable switches, the smallest
two-terminal molecular switches to date. Experiments with a conventional or
novel self-assembled STM are proposed to test these predictions.Comment: 8 pages, 3 figure
Current-Driven Conformational Changes, Charging and Negative Differential Resistance in Molecular Wires
We introduce a theoretical approach based on scattering theory and total
energy methods that treats transport non-linearities, conformational changes
and charging effects in molecular wires in a unified way. We apply this
approach to molecular wires consisting of chain molecules with different
electronic and structural properties bonded to metal contacts. We show that
non-linear transport in all of these systems can be understood in terms of a
single physical mechanism and predict that negative differential resistance at
high bias should be a generic property of such molecular wires.Comment: 9 pages, 4 figure
Antiresonances in Molecular Wires
We present analytic and numerical studies based on Landauer theory of
conductance antiresonances of molecular wires. Our analytic treatment is a
solution of the Lippmann-Schwinger equation for the wire that includes the
effects of the non-orthogonality of the atomic orbitals on different atoms
exactly. The problem of non-orthogonality is treated by solving the transport
problem in a new Hilbert space which is spanned by an orthogonal basis. An
expression is derived for the energies at which antiresonances should occur for
a molecular wire connected to a pair of single-channel 1D leads. From this
expression we identify two distinct mechanisms that give rise to antiresonances
under different circumstances. The exact treatment of non-orthogonality in the
theory is found to be necessary to obtain reliable results. Our numerical
simulations extend this work to multichannel leads and to molecular wires
connected to 3D metallic nanocontacts. They demonstrate that our analytic
results also provide a good description of these more complicated systems
provided that certain well-defined conditions are met. These calculations
suggest that antiresonances should be experimentally observable in the
differential conductance of molecular wires of certain types.Comment: 22 pages, 5 figure
Electron Standing Wave Formation in Atomic Wires
Using the Landauer formulation of transport theory and tight binding models
of the electronic structure, we study electron transport through atomic wires
that form 1D constrictions between pairs of metallic nano-contacts. Our results
are interpreted in terms of electron standing waves formed in the atomic wires
due to interference of electron waves reflected at the ends of the atomic
constrictions. We explore the influence of the chemistry of the atomic
wire-metal contact interfaces on these standing waves and the associated
transport resonances by considering two types of atomic wires: gold wires
attached to gold contacts and carbon wires attached to gold contacts. We find
that the conductance of the gold wires is roughly for the
wire lengths studied, in agreement with experiments. By contrast, for the
carbon wires the conductance is found to oscillate strongly as the number of
atoms in the wire varies, the odd numbered chains being more conductive than
the even numbered ones, in agreement with previous theoretical work that was
based on a different model of the carbon wire and metal contacts.Comment: 14 pages, includes 6 figure
Landauer Theory, Inelastic Scattering and Electron Transport in Molecular Wires
In this paper we address the topic of inelastic electron scattering in
mesoscopic quantum transport. For systems where only elastic scattering is
present, Landauer theory provides an adequate description of transport that
relates the electronic current to single-particle transmission and reflection
probabilities. A formalism proposed recently by Bonca and Trugman facilitates
the calculation of the one-electron transmission and reflection probabilities
for inelastic processes in mesoscopic conductors connected to one-dimensional
ideal leads. Building on their work, we have developed a self-consistent
procedure for the evaluation of the non-equilibrium electron distributions in
ideal leads connecting such mesoscopic conductors to electron reservoirs at
finite temperatures and voltages. We evaluate the net electronic current
flowing through the mesoscopic device by utilizing these non-equilibrium
distributions. Our approach is a generalization of Landauer theory that takes
account of the Pauli exclusion principle for the various competing elastic and
inelastic processes while satisfying the requirement of particle conservation.
As an application we examine the influence of elastic and inelastic scattering
on conduction through a two site molecular wire with longitudinal phonons using
the Su-Schrieffer-Heeger model of electron-phonon coupling.Comment: 25 pages, 8 figure