110 research outputs found

    Bond Behavior of CFRP-to-Steel Bonded Joints at Mild Temperatures: Experimental Study

    Get PDF
    The performance of steel structures strengthened with externally bonded fiber-reinforced polymer (FRP) rely heavily on the interfacial shear stress transfer mechanism of the FRP-to-steel bonded interface. Much is known about the behavior of FRP-to-steel bonded joints under mechanical loading, but little is known about the performance of this type of bonded joints at elevated temperatures. Almost all adhesives typically used in FRP-to-steel applications experience a change in their mechanical behavior at temperatures <70°C. Therefore, gaining a sound understanding of the behavior of FRP-to-steel bonded joints at elevated temperatures is necessary. This paper presents a series of tests where carbon FRP (CFRP)-to-steel bonded joints are subjected to elevated temperatures. The outcomes of this paper showed that, at elevated temperatures, the dominant failure mode of the CFRP-to-steel bonded joints is the cohesion failure within the adhesive. The bond strength was found to increase with the temperature until the heat deflection temperature (HDT). The bond–slip behavior of the interface was found to undergo significant changes with increasing temperature. Specifically, the initial elastic stiffness and the peak shear stress were found to decrease as the temperature increases. The fracture energy was found to increase at temperatures below the HDT but then decrease drastically when the temperatures exceed the HDT

    Study on the effectiveness of fire suppression deluge systems in tunnels

    Get PDF
    The required water flow for adequate deluge system operation during a tunnel fire is currently only prescribed by a few regulatory authorities. Car fires are commonly used as references when addressing water-based suppression; nevertheless, limited public information exists on the amount of water required for correctly suppressing a car fire and the thresholds by which the suppression systems fails to be effective. This paper aims at delivering key experimental outcomes to fill this gap in car tunnel fire suppression. The effectiveness of deluge sprinkler systems was investigated by performing a series of full-scale car fire experiments. These experiments were performed by symmetrically positioning a single car under a single sprinkler nozzle, with activation happening (i.e. the sprinkler going off) at a certain time from ignition (which defines the size of the fire), and carefully gauging the burning behaviour of the car fire. A single car was used as it was deemed as the minimum unit for a fire. Temperatures inside, around, and above the car were measured and infrared camera footage was used to gauge flame heights during the experiment. Results from this study yielded two forms of car fire suppression by a deluge system: gradual and instantaneous. A correlation between heat release rate and required water flow for the deluge system is also presented. Outcomes herein show that a water flow per unit area of 6.6 mm/min is the minimum water flow required to effectively reduce the temperature in the immediate vicinity of a car fire of different sizes

    Expression analysis of the mouse S100A7/psoriasin gene in skin inflammation and mammary tumorigenesis

    Get PDF
    BACKGROUND: The human psoriasin (S100A7) gene has been implicated in inflammation and tumor progression. Implementation of a mouse model would facilitate further investigation of its function, however little is known of the murine psoriasin gene. In this study we have cloned the cDNA and characterized the expression of the potential murine ortholog of human S100A7/psoriasin in skin inflammation and mammary tumorigenesis. METHODS: On the basis of chromosomal location, phylogenetic analysis, amino acid sequence similarity, conservation of a putative Jab1-binding motif, and similarities of the patterns of mouse S100A7/psoriasin gene expression (measured by RT-PCR and in-situ hybridization) with those of human S100A7/psoriasin, we propose that mouse S100A7/psoriasin is the murine ortholog of human psoriasin/S100A7. RESULTS: Although mouse S100A7/psoriasin is poorly conserved relative to other S100 family members, its pattern of expression parallels that of the human psoriasin gene. In murine skin S100A7/psoriasin was significantly upregulated in relation to inflammation. In murine mammary gland expression is also upregulated in mammary tumors, where it is localized to areas of squamous differentiation. This mirrors the context of expression in human tumor types where both squamous and glandular differentiation occur, including cervical and lung carcinomas. Additionally, mouse S100A7/psoriasin possesses a putative Jab1 binding motif that mediates many downstream functions of the human S100A7 gene. CONCLUSION: These observations and results support the hypothesis that the mouse S100A7 gene is structurally and functionally similar to human S100A7 and may offer a relevant model system for studying its normal biological function and putative role in tumor progression

    S100A7 and the progression of breast cancer

    Get PDF
    The S100 gene family comprises more than 20 members whose protein sequences encompass at least one EF-hand Ca(2+ )binding motif. The expression of individual family members is not ubiquitous for all tissues and there appears to be an element of tissue-specific expression. Molecular analysis of breast tumors has revealed that several S100s, including S100A2, S100A4 and S100A7, exhibit altered expression levels during breast tumorigenesis and/or progression. Subsequent studies have started to describe a functional role for these S100 proteins as well as their mechanism of action and the biochemical pathways they modify. The present review outlines what is known about S100A7 in breast cancer and summarizes the need to better understand the importance of this protein in breast cancer

    S100A7 (Psoriasin), highly expressed in Ductal Carcinoma In Situ (DCIS), is regulated by IFN-gamma in mammary epithelial cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of the present work was to explore signal transduction pathways used in the regulation of S100A7 (psoriasin). Members of the S100 gene family participate in many important cellular functions. Psoriasin, S100A8 (calgranulin A) and S100A9 (calgranulin B) are expressed in ductal carcinoma <it>in situ </it>(DCIS), as well as in the hyperproliferative skin disease, psoriasis. In the latter condition, a disturbance in the STAT pathway has recently been reported. This pathway is implicated in the regulation of IFN-gamma, widely recognized as a key cytokine in psoriasis. IFN-gamma also exerts anti-tumor action in a number of tumor cell types, including breast cancer. We therefore examined the effect of IFN-gamma and STAT-signaling on the psoriasin expression.</p> <p>Methods</p> <p>We established a TAC2 mouse mammary epithelial cell line with tetracycline-inducible psoriasin expression (Tet-Off). Viability in cell culture was estimated using MTS assay. Protein and gene expression were evaluated by Western blotting and quantitative real-time PCR. Statistical analyses were assessed using a one-tailed, paired t-test.</p> <p>Results</p> <p>We report the downregulation of psoriasin by IFN-gamma in the MDA-MB-468 breast cancer cell line, as well as the downregulation of psoriasin induced by anoikis in cell lines derived from different epithelial tissues. In contrast, IFN-gamma had no suppressive effect on calgranulin A or calgranulin B. IFN-gamma is an important activator of the STAT1 pathway and we confirmed an active signaling pathway in the cell lines that responded to IFN-gamma treatment. In contrast, in the SUM190 breast carcinoma cell line, IFN-gamma did not suppress the expression of endogenous psoriasin. Moreover, a reduced phosphorylation of the STAT1 protein was observed. We showed that IFN-gamma treatment and the inhibition of the transcription factor NFkappaB had a synergistic effect on psoriasin levels. Finally, in TAC2 cells with tetracycline-induced psoriasin expression, we observed the increased viability of psoriasin-expressing cells after IFN-gamma treatment.</p> <p>Conclusion</p> <p>Our data support the possibility that psoriasin expression is transcriptionally suppressed by IFN-gamma and that this effect is likely to be mediated by the activation of the STAT1 signaling pathway. The increased viability of psoriasin-expressing cells after IFN-gamma exposure suggests that psoriasin expression leads to the development of an apoptosis-resistant phenotype.</p

    S100A7-Downregulation Inhibits Epidermal Growth Factor-Induced Signaling in Breast Cancer Cells and Blocks Osteoclast Formation

    Get PDF
    S100A7 is a small calcium binding protein, which has been shown to be differentially expressed in psoriatic skin lesions, as well as in squamous cell tumors of the skin, lung and breast. Although its expression has been correlated to HER+ high-grade tumors and to a high risk of progression, the molecular mechanisms of these S100A7-mediated tumorigenic effects are not well known. Here, we showed for the first time that epidermal growth factor (EGF) induces S100A7 expression in both MCF-7 and MDA-MB-468 cell lines. We also observed a decrease in EGF-directed migration in shRNA-downregulated MDA-MB-468 cell lines. Furthermore, our signaling studies revealed that EGF induced simultaneous EGF receptor phosphorylation at Tyr1173 and HER2 phosphorylation at Tyr1248 in S100A7-downregulated cell lines as compared to the vector-transfected controls. In addition, reduced phosphorylation of Src at tyrosine 416 and p-SHP2 at tyrosine 542 was observed in these downregulated cell lines. Further studies revealed that S100A7-downregulated cells had reduced angiogenesis in vivo based on matrigel plug assays. Our results also showed decreased tumor-induced osteoclastic resorption in an intra-tibial bone injection model involving SCID mice. S100A7-downregulated cells had decreased osteoclast number and size as compared to the vector controls, and this decrease was associated with variations in IL-8 expression in in vitro cell cultures. This is a novel report on the role of S100A7 in EGF-induced signaling in breast cancer cells and in osteoclast formation

    S100A7 (psoriasin) expression is associated with aggressive features and alteration of Jab1 in ductal carcinoma in situ of the breast

    Get PDF
    INTRODUCTION: The S100A7 (psoriasin) gene is highly expressed in ductal carcinoma in situ (DCIS) of the breast and can be downregulated in invasive carcinoma. Persistent S100A7 expression in invasive carcinoma is associated with a worse prognosis, and this effect may be mediated in part through interaction with the multifunctional cell signaling protein Jab1. METHODS: In order to investigate the relationship between S100A7 and progression from DCIS to invasive carcinoma, we studied S100A7 expression in 136 patients with DCIS (including 46 patients with associated invasive carcinoma) by immunohistochemistry. RESULTS: S100A7 expression was present in 63 out of 136 (46%) of DCIS lesions and was associated with estrogen receptor negative status (P = 0.0002), higher nuclear grade (P < 0.0001), necrosis (P < 0.0001) and inflammation (P < 0.0001). S100A7 status was no different between DCIS with and DCIS without an invasive component, but higher levels of S100A7 were present in DCIS associated with invasive carcinoma (P < 0.004). Analysis of a subset of cases showed that S100A7 expression was also associated with an increase in nuclear Jab1 (n = 43; P = 0.0019) and reduced p27(kip1 )(n = 47; P = 0.0168). In cases of DCIS associated with invasive carcinoma, there was also a significant reduction in S100A7 between in situ and invasive components (n = 46; P < 0.0001). In pure DCIS cases treated by local excision, there was no difference in frequency of S100A7 expression between patients with recurrence of DCIS (n = 9) and those without (n = 36). CONCLUSION: The findings reported here suggest that, although S100A7 may not be a marker for recurrence of DCIS, it is associated with poor prognostic markers in DCIS and may influence progression of breast carcinoma through its interaction with and influence on Jab1

    Nuclear S100A7 Is Associated with Poor Prognosis in Head and Neck Cancer

    Get PDF
    Tissue proteomic analysis of head and neck squamous cell carcinoma (HNSCC) and normal oral mucosa using iTRAQ (isobaric tag for relative and absolute quantitation) labeling and liquid chromatography-mass spectrometry, led to the identification of a panel of biomarkers including S100A7. In the multi-step process of head and neck tumorigenesis, the presence of dysplastic areas in the epithelium is proposed to be associated with a likely progression to cancer; however there are no established biomarkers to predict their potential of malignant transformation. This study aimed to determine the clinical significance of S100A7 overexpression in HNSCC.Immunohistochemical analysis of S100A7 expression in HNSCC (100 cases), oral lesions (166 cases) and 100 histologically normal tissues was carried out and correlated with clinicopathological parameters and disease prognosis over 7 years for HNSCC patients. Overexpression of S100A7 protein was significant in oral lesions (squamous cell hyperplasia/dysplasia) and sustained in HNSCC in comparison with oral normal mucosa (p(trend)<0.001). Significant increase in nuclear S100A7 was observed in HNSCC as compared to dysplastic lesions (p = 0.005) and associated with well differentiated squamous cell carcinoma (p = 0.031). Notably, nuclear accumulation of S100A7 also emerged as an independent predictor of reduced disease free survival (p = 0.006, Hazard ratio (HR = 7.6), 95% CI = 1.3-5.1) in multivariate analysis underscoring its relevance as a poor prognosticator of HNSCC patients.Our study demonstrated nuclear accumulation of S100A7 may serve as predictor of poor prognosis in HNSCC patients. Further, increased nuclear accumulation of S100A7 in HNSCC as compared to dysplastic lesions warrants a large-scale longitudinal study of patients with dysplasia to evaluate its potential as a determinant of increased risk of transformation of oral premalignant lesions

    Michael Gove’s war on professional historical expertise : conservative curriculum reform, extreme Whig history and the place of imperial heroes in modern multicultural Britain

    Get PDF
    Six years of continuously baiting his opponents within the history profession eventually amounted to little where it mattered most. UK Secretary of State for Education, Michael Gove, finally backtracked in 2013 on his plans to impose a curriculum for English schools based on a linear chronology of the achievements of British national heroes. His ‘history as celebration’ curriculum was designed to instil pride amongst students in a supposedly shared national past, but would merely have accentuated how many students in modern multicultural Britain fail to recognise themselves in what is taught in school history lessons. Now that the dust has settled on Gove’s tenure as Secretary of State, the time is right for retrospective analysis of how his plans for the history curriculum made it quite so far. How did he construct an ‘ideological’ conception of expertise which allowed him to go toe-to-toe for so long with the ‘professional’ expertise of academic historians and history teachers? What does the content of this ideological expertise tell us about the politics of race within Conservative Party curriculum reforms? This article answers these questions to characterise Gove as a ‘whig historian’ of a wilfully extreme nature in his attachment to imperial heroes as the best way to teach national history in modern multicultural Britain

    S100A14 Stimulates Cell Proliferation and Induces Cell Apoptosis at Different Concentrations via Receptor for Advanced Glycation End Products (RAGE)

    Get PDF
    S100A14 is an EF-hand containing calcium-binding protein of the S100 protein family that exerts its biological effects on different types of cells. However, exact extracellular roles of S100A14 have not been clarified yet. Here we investigated the effects of S100A14 on esophageal squamous cell carcinoma (ESCC) cell lines. Results demonstrated that low doses of extracellular S100A14 stimulate cell proliferation and promote survival in KYSE180 cells through activating ERK1/2 MAPK and NF-κB signaling pathways. Immunoprecipitation assay showed that S100A14 binds to receptor for advanced glycation end products (RAGE) in KYSE180 cells. Inhibition of RAGE signaling by different approaches including siRNA for RAGE, overexpression of a dominant-negative RAGE construct or a RAGE antagonist peptide (AmphP) significantly blocked S100A14-induced effects, suggesting that S100A14 acts via RAGE ligation. Furthermore, mutation of the N-EF hand of S100A14 (E39A, E45A) virtually reduced 10 µg/ml S100A14-induced cell proliferation and ERK1/2 activation. However, high dose (80 µg/ml) of S100A14 causes apoptosis via the mitochondrial pathway with activation of caspase-3, caspase-9, and poly(ADP-ribose) polymerase. High dose S100A14 induces cell apoptosis is partially in a RAGE-dependent manner. This is the first study to demonstrate that S100A14 binds to RAGE and stimulates RAGE-dependent signaling cascades, promoting cell proliferation or triggering cell apoptosis at different doses
    • …
    corecore