197 research outputs found

    Collaborative trails in e-learning environments

    Get PDF
    This deliverable focuses on collaboration within groups of learners, and hence collaborative trails. We begin by reviewing the theoretical background to collaborative learning and looking at the kinds of support that computers can give to groups of learners working collaboratively, and then look more deeply at some of the issues in designing environments to support collaborative learning trails and at tools and techniques, including collaborative filtering, that can be used for analysing collaborative trails. We then review the state-of-the-art in supporting collaborative learning in three different areas – experimental academic systems, systems using mobile technology (which are also generally academic), and commercially available systems. The final part of the deliverable presents three scenarios that show where technology that supports groups working collaboratively and producing collaborative trails may be heading in the near future

    Protein synthesis rates of muscle, tendon, ligament, cartilage, and bone tissue in vivo in humans

    Get PDF
    Skeletal muscle plasticity is reflected by a dynamic balance between protein synthesis and breakdown, with basal muscle tissue protein synthesis rates ranging between 0.02 and 0.09%/h. Though it is evident that other musculoskeletal tissues should also express some level of plasticity, data on protein synthesis rates of most of these tissues in vivo in humans is limited. Six otherwise healthy patients (62±3 y), scheduled to undergo unilateral total knee arthroplasty, were subjected to primed continuous intravenous infusions with L-[ring-13C6]-Phenylalanine throughout the surgical procedure. Tissue samples obtained during surgery included muscle, tendon, cruciate ligaments, cartilage, bone, menisci, fat, and synovium. Tissue-specific fractional protein synthesis rates (%/h) were assessed by measuring the incorporation of L-[ring-13C6]-Phenylalanine in tissue protein and were compared with muscle tissue protein synthesis rates using a paired t test. Tendon, bone, cartilage, Hoffa’s fat pad, anterior and posterior cruciate ligament, and menisci tissue protein synthesis rates averaged 0.06±0.01, 0.03±0.01, 0.04±0.01, 0.11±0.03, 0.07±0.02, 0.04±0.01, and 0.04±0.01%/h, respectively, and did not significantly differ from skeletal muscle protein synthesis rates (0.04±0.01%/h; P>0.05). Synovium derived protein (0.13±0.03%/h) and intercondylar notch bone tissue protein synthesis rates (0.03±0.01%/h) were respectively higher and lower compared to skeletal muscle protein synthesis rates (P<0.05 and P<0.01, respectively). Basal protein synthesis rates in various musculoskeletal tissues are within the same range of skeletal muscle protein synthesis rates, with fractional muscle, tendon, bone, cartilage, ligament, menisci, fat, and synovium protein synthesis rates ranging between 0.02 and 0.13% per hour in vivo in humans

    Social Aspects of CSCL Environments: A Research Framework

    Get PDF
    Although there are research findings supporting the positive effects of computer-supported col- laborative learning (CSCL), problems have been reported regarding the learning process itself, group formation, and group dynamics. These problems can be traced back to impeded social interaction between group members. Social interaction is necessary (a) for group members to learn from each other in a CSCL environment and (b) for socioemotional processes to help cre- ate a social space where trust, sense of community, and strong interpersonal relationships exist. This article introduces a theoretical framework consisting of three core elements: sociability, social space, and social presence, along with their relationships with group members’ mental models, social affordances and learning outcomes. It postulates that the three core elements influence the social interaction needed for both learning and the emergence of a social space. This framework serves as a basis for a research agenda for systematic social CSCL research

    Exploring deliberate practice in medicine: how do physicians learn in the workplace?

    Get PDF
    Medical professionals need to keep on learning as part of their everyday work to deliver high-quality health care. Although the importance of physicians’ learning is widely recognized, few studies have investigated how they learn in the workplace. Based on insights from deliberate practice research, this study examined the activities physicians engage in during their work that might further their professional development. As deliberate practice requires a focused effort to improve performance, the study also examined the goals underlying this behaviour. Semi-structured interviews were conducted with 50 internal medicine physicians: 19 residents, 18 internists working at a university hospital, and 13 working at a non-university hospital. The results showed that learning in medical practice was very much embedded in clinical work. Most relevant learning activities were directly related to patient care rather than motivated by competence improvement goals. Advice and feedback were sought when necessary to provide this care. Performance standards were tied to patients’ conditions. The patients encountered and the discussions with colleagues about patients were valued most for professional development, while teaching and updating activities were also valued in this respect. In conclusion, physicians’ learning is largely guided by practical experience rather than deliberately sought. When professionals interact in diagnosing and treating patients to achieve high-quality care, their experiences contribute to expertise development. However, much could be gained from managing learning opportunities more explicitly. We offer suggestions for increasing the focus on learning in medical practice and further research

    The diagnostic and prognostic value of red cell distribution width in cardiovascular disease, current status and prospective

    Get PDF
    The red blood cell distribution width (RDW) is an index of the heterogeneity of circulating red blood cell size, which along with other standard complete blood count (CBC) parameters are used to identify hematological system diseases. Besides hematological disorders, several clinical studies have shown that an increased in the RDW may be associated with other diseases including acute pancreatitis, chronic kidney disease, gastrointestinal disorders, cancer, and of special interest in this review, cardiovascular disease (CVD). The diagnostic and prognostic value of RDW in different CVD (acute coronary syndrome, ischemic cerebrovascular disease, peripheral artery disease, atrial fibrillation, heart failure, and acute ischemic stroke) has been reviewed in this article, to provide an understanding how its measurement may be applied to improve the management of these conditions.Keywords: RDW, Biomarker, Cardiovascular disease

    Clinical effect of continuous corrective force delivery in the non-operative treatment of idiopathic scoliosis: a prospective cohort study of the triac-brace

    Get PDF
    A prospective cohort study of skeletally immature idiopathic scoliotic patients treated with the TriaC brace. To determine if the TriaC brace is effective in preventing curve progression in immature adolescent idiopathic scoliotic patients with a very high risk of curve progression based on reported natural history data. The aim of the newly introduced TriaC brace is to reverse the pathologic transverse force pattern by externally applied and continuously present orthotic forces. In the frontal plane the force system used in the TriaC brace is similar to the force system of the conventional braces. However, in the sagittal plane the force system acts only on the thoracic region. In addition, the brace allows upper trunk flexibility without affecting the corrective forces during body motion. In a preliminary study it is demonstrated that the brace prevents further progression of both the Cobb angle and axial rotation in idiopathic scoliosis. Skeletally immature patients with idiopathic scoliosis with curves between 20 and 40° were studied prospectively. Skeletally immature was defined as a Risser sign 0 or 1 for both boys and girls, or pre-menarche or less than 1-year post-menarche for girls. Curves of less than 30° had to have documented progression before entry. The mean age of the patients at the start of treatment was 11.3 ± 3.1 years. All measurements were collected by a single observer, and all patients were followed up to skeletal maturity. Treatment was complete for all participants when they had reached Risser sign 4 and did not show any further growth at length measurements. This was at a mean age of 15.6 ± 1.1 years, with a mean follow-up of 1.6 years post bracing. In our study a successful outcome was obtained in 76% of patients treated with the TriaC brace. Comparing our data to literature data on natural history of a similar cohort shows that the TriaC brace significantly alters the predicted natural history. The current study demonstrates that treatment with the TriaC brace reduces the scoliosis, and that the achieved correction is maintained in some degree after skeletal maturity is reached and bracing is discontinued. It also prevents further progression of the Cobb angle in idiopathic scoliosis. The new brace does not differ from the conventional braces as far as maintaining the deformity is concerned

    Surgical and conservative treatment of patients with congenital scoliosis: α search for long-term results

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In view of the limited data available on the conservative treatment of patients with congenital scoliosis (CS), early surgery is suggested in mild cases with formation failures. Patients with segmentation failures will not benefit from conservative treatment. The purpose of this review is to identify the mid- or long-term results of spinal fusion surgery in patients with congenital scoliosis.</p> <p>Methods</p> <p>Retrospective and prospective studies were included, reporting on the outcome of surgery in patients with congenital scoliosis. Studies concerning a small numbers of cases treated conservatively were included too. We analyzed mid-term (5 to 7 years) and long-term results (7 years or more), both as regards the maintenance of the correction of scoliosis and the safety of instrumentation, the early and late complications of surgery and their effect on quality of life.</p> <p>Results</p> <p>A small number of studies of surgically treated patients were found, contained follow-up periods of 4-6 years that in the most cases, skeletal maturity was not yet reached, and few with follow-up of 36-44 years. The results of bracing in children with congenital scoliosis, mainly in cases with failure of formation, were also studied.</p> <p>Discussion</p> <p>Spinal surgery in patients with congenital scoliosis is regarded in short as a safe procedure and should be performed. On the other hand, early and late complications are also described, concerning not only intraoperative and immediate postoperative problems, but also the safety and efficacy of the spinal instrumentation and the possibility of developing neurological disorders and the long-term effect these may have on both lung function and the quality of life of children.</p> <p>Conclusions</p> <p>Few cases indicate the long-term results of surgical techniques, in the natural progression of scoliosis. Similarly, few cases have been reported on the influence of conservative treatment.</p> <p>In conclusion, patients with segmentation failures should be treated surgically early, according to the rate of deformity formation and certainly before the pubertal growth spurt to try to avoid cor- pulmonale, even though there is lack of evidence for that in the long-term. Furthermore, in patients with formation failures, further investigation is needed to document where a conservative approach would be necessary.</p

    Visual Genome-Wide RNAi Screening to Identify Human Host Factors Required for Trypanosoma cruzi Infection

    Get PDF
    The protozoan parasite Trypanosoma cruzi is the etiologic agent of Chagas disease, a neglected tropical infection that affects millions of people in the Americas. Current chemotherapy relies on only two drugs that have limited efficacy and considerable side effects. Therefore, the development of new and more effective drugs is of paramount importance. Although some host cellular factors that play a role in T. cruzi infection have been uncovered, the molecular requirements for intracellular parasite growth and persistence are still not well understood. To further study these host-parasite interactions and identify human host factors required for T. cruzi infection, we performed a genome-wide RNAi screen using cellular microarrays of a printed siRNA library that spanned the whole human genome. The screening was reproduced 6 times and a customized algorithm was used to select as hits those genes whose silencing visually impaired parasite infection. The 162 strongest hits were subjected to a secondary screening and subsequently validated in two different cell lines. Among the fourteen hits confirmed, we recognized some cellular membrane proteins that might function as cell receptors for parasite entry and others that may be related to calcium release triggered by parasites during cell invasion. In addition, two of the hits are related to the TGF-beta signaling pathway, whose inhibition is already known to diminish levels of T. cruzi infection. This study represents a significant step toward unveiling the key molecular requirements for host cell invasion and revealing new potential targets for antiparasitic therapy
    corecore