4 research outputs found
Synthesis and Spectroscopic Characterization of Dapagliflozin/Zn (II), Cr (III) and Se (IV) Novel Complexes That Ameliorate Hepatic Damage, Hyperglycemia and Oxidative Injury Induced by Streptozotocin-Induced Diabetic Male Rats and Their Antibacterial Activity
Diabetes mellitus (DM) causes an imbalance in the oxidative status of the human body. Three novel Dapagliflozin (Dapg) Zn (II), Cr (III) and Se (IV) complexes were prepared and characterized by elemental analysis, IR, electronic spectra, magnetic susceptibility, scanning electron microscopy (SEM) and X-ray diffraction. The molar conductance values confirmed the non-electrolytic nature of the Dapg complexes. According to spectral data, Dapg acts as a bidentate ligand. The thermal analyses of the complexes were studied using the DSC technique. The surface morphology and particle sizes of the Dapg complexes were investigated using SEM and XRD. XRD confirmed the crystalline structure for the complexity. This study investigated the effect of novel metal complexes of Dapg with the metals Zn (II), Cr (III) and Se (IV) on oxidative injury and tissue damage in the hepatic tissue of streptozotocin (STZ)-induced diabetic male rats. DM was experimentally induced in male rats. The diabetic rats received Dapg, Dapg/Zn, Dapg/Cr and Dapg/Se orally for 30 successive days. Male rats exposed to STZ showed multi-histopathological alterations in their hepatic tissue, including inflammatory and structural changes. STZ elevated oxidative stress markers in the hepatic tissue and lowered the antioxidant defense enzymes. Supplementation of Dapg with Zn, Cr or Se novel complexes significantly prevented hepatic injury and suppressed the generation of reactive oxygen species. The Dapg/Zn complex was highly effective against Bacillus subtilis and Streptococcus penumonia, while Dapg/Cr was highly effective against Escherichia coli and Pseudomonas aeruginosa, and Dapg/Se was highly effective against Staphylococcus aureas. In conclusion, Dapg novel metal complexes with Zn, Cr or Se protect against oxidative injury and the pathophysiological and bacterial complications of DM and hepatic tissue injury. The Dapg novel metal complexes improved hepatic functions, reduced blood glucose levels and enhanced the levels of antioxidant defense enzymes in diabetic male rats
Efficacy of Prednisolone/Zn Metal Complex and Artemisinin Either Alone or in Combination on Lung Functions after Excessive Exposure to Electronic Cigarettes Aerosol with Assessment of Antibacterial Activity
The use of transition metal complexes as therapeutic compounds has become more and more pronounced. These complexes offer a great diversity of uses in their medicinal applications. Electronic cigarettes (ECs) are an electronic nicotine delivery system that contain aerosol (ECR). The ligation behavior of prednisolone, which is a synthetic steroid that is used to treat allergic diseases and asthma arthritis, and its Zn (II) metal complex were studied and characterized based on elemental analysis, molar conductance, Fourier-transform infrared (FT-IR) spectra, electronic spectra, XRD, scanning electron microscopy (SEM), energy dispersive x-ray (EDX), and transmission electron microscopy (TEM). The FT-IR spectral data revealed that PRD acts as a mono-dentate ligand via oxygen atoms of the carbonyl group. Electronic and FT-IR data revealed that the PRD/Zn (II) metal complexes have square planner geometry. Artemisinin (ART) is the active main constituent of Artemisia annua extract, and it has been demonstrated to exert an excellent antimalarial effect. The experiment was performed on 40 male mice that were divided into the following 7 groups: Control, EC group, PRD/Zn, ART, EC plus PRD/Zn, EC plus ART, and PRD plus combination of PRD/Zn and ART. Serum CRP, IL-6, and antioxidants biomarkers were determined. Pulmonary tissue histology was evaluated. When in combination with Zn administration, PRD showed potent protective effects against pulmonary biochemical alterations induced by ECR and suppressed severe oxidative stress and pulmonary structure alterations. Additionally, PRD/Zn combined with ART prevented any stress on the pulmonary tissues via antioxidant regulation, reducing inflammatory markers CRP and Il-6 and improving antioxidant enzymatic levels more than either PRD or ART alone. Therefore, PRD/Zn combined with ART produced a synergistic effect against any sort of oxidative stress and also improved the histological structure of the lung tissues. These findings are of great importance for saving pulmonary function, especially during pandemic diseases, such as during the COVID-19 pandemic
Saudi Consensus Recommendations on the Management of Multiple Sclerosis: Disease-Modifying Therapies and Management of Relapses
For the past 10 years, disease-modifying therapy (DMT) options for multiple sclerosis (MS) have grown remarkably where DMTs have been shown to reduce the risk of MS relapses. MS patients are advised to begin treatment with a DMT shortly after diagnosis to limit the possibility of disease progression over time. While patients with radiologically isolated syndrome do not require pharmacologic treatment, high-risk patients with clinically isolated syndrome are advised to start DMTs. This article provides evidence-based recommendations for DMT use in MS management, helping healthcare practitioners advise patients on treatment decisions. We aim to provide recommendations for the management of acute MS relapses. The recommendations herein were developed following the gathering of a panel of experts after evaluating international guidelines, and the latest evidence was collected through a comprehensive literature review
Saudi Consensus Recommendations on the Management of Multiple Sclerosis: Disease-Modifying Therapies and Management of Relapses
For the past 10 years, disease-modifying therapy (DMT) options for multiple sclerosis (MS) have grown remarkably where DMTs have been shown to reduce the risk of MS relapses. MS patients are advised to begin treatment with a DMT shortly after diagnosis to limit the possibility of disease progression over time. While patients with radiologically isolated syndrome do not require pharmacologic treatment, high-risk patients with clinically isolated syndrome are advised to start DMTs. This article provides evidence-based recommendations for DMT use in MS management, helping healthcare practitioners advise patients on treatment decisions. We aim to provide recommendations for the management of acute MS relapses. The recommendations herein were developed following the gathering of a panel of experts after evaluating international guidelines, and the latest evidence was collected through a comprehensive literature review