6 research outputs found

    Anticancer effects of punicalagin and 5-fluorouracil on laryngeal squamous cell carcinoma: an <i>in vitro</i> study

    Get PDF
    The purpose of this study was to assess the apoptotic effects of punicalagin alone and in combination with 5-fluorouracil (5-FU) on laryngeal squamous cell carcinoma (Hep-2) cell line. Hep-2 cells were cultured and divided into four groups: Group 1 received no therapy and served as control, Group 2 received 5-FU only, Group 3 received punicalagin only, and Group 4 received a combination of 5-FU and punicalagin. After 48 hours of incubation, cellular changes were examined under an inverted microscope. The methyl thiazolyl tetrazolium assay, caspase-3 gene level, and vascular endothelial growth factor (VEGF) level were assessed. The control group showed the highest mean value of cancer cell proliferation rate (1.595±0.58), followed by the punicalagin group (1.263±0.447), then the 5-FU group (0.827±0.256), while the combination group showed the lowest proliferation rate (0.253±0.111). The combination group showed the highest mean value of caspase-3 concentration (3.177±0.736), followed by the 5-FU group (1.830±0.646), and punicalagin group (0.741±0.302), while the control group showed the lowest mean value (0.359±0.117). Regarding VEGF levels, the control group had a statistically significant higher mean value, followed by the punicalagin and 5-FU groups, and finally, the combination group which showed the lowest value. Punicalagin exerts an anticancer effect through anti-proliferative action and induction of apoptosis on Hep-2 cell line. Combining punicalagin with 5-FU potentiates its anti-proliferative, apoptotic, and anti-angiogenic actions. It, further, helps in mitigating the putative side effects of 5-FU by reducing the dose required for its therapeutic effects

    Impacts of ZnO as a nanofertilizer on fenugreek: some biochemical parameters and SCoT analysis

    No full text
    Abstract Background Zinc oxide nanoparticles (ZnO NPs) can be considered as nanofertilizer providing zinc as an essential micronutrient for plant growth and production at specific safe dose, however, above this dose; ZnO NPs induce oxidative stress. The present research aimed to evaluate some physiological and molecular effects of ZnO NPs on Trigonella foenum-graecum (fenugreek) plant. Results The ZnO NPs were applied at five different concentrations (10, 20, 30, 40, and 50 mg/l) via soaking fenugreek seeds for 24 h. Fenugreek seedlings were harvested after 14 days for biomass and biochemical analyses. The results revealed that increasing ZnO NPs concentration led to a significant increase in all measured parameters until peaked at 30 mg/l; after that, a decline trend was detected. However, malondialdehyde (MDA) increased significantly just at higher concentrations of ZnO NPs (40 and 50 mg/l). In addition, genetic variation measure using start codon targeted (SCoT) markers revealed that ZnO NP treatments exhibited limited genetic variation. Conclusion Results showed that treatment with ZnO NPs at 30 mg/l can improve biomass, bioactive compounds, and antioxidant activity of fenugreek seedlings, besides being safe for DNA. So, this concentration could be a decent nanofertilizer for fenugreek plant

    Influence of gamma radiation and phenylalanine on secondary metabolites in callus cultures of milk thistle (Silybum marianum L.)

    No full text
    Abstract Background A useful technique for growing large amounts of plant material is in vitro propagation of important medicinal plants. The present investigation deals with the enhancement of secondary metabolite production via elicitation using gamma (γ)-radiation and phenylalanine (Phe) precursor feeding in callus cultures of Silybum marianum L. Results Seeds were exposed to two doses of γ-radiation (25 and 50 Gy) and the calli derived from stem explants  obtained from seedlings of these radiated seeds were treated with different concentrations of Phe. The biosynthesis of phenols and flavonoids was evaluated. It was found that callus cultures derived from explants of the seeds exposed to 25 Gy γ-radiation and treated with 4 mg/l Phe accumulated the maximum phenolic content (34.27±0.02 mg/g d.wt.), while the highest flavonoid content (9.56±0.12 mg/g d.wt.) was found in callus cultures derived from explants of seeds radiated with 25 Gy γ-radiation and subjected to 1 mg/l Phe. Similarly, HPLC quantification revealed that the production of flavonoids was highly accumulated (1343.06 μg/mg d.wt.) in callus cultures from explants of seeds  exposed to 25 Gy γ-radiation and grown at 1 mg/l Phe compared to the other treatments. In addition, a total of 11 important flavonoids have been determined in all callus cultures, except for acacetin-7-O-rutinoside, which was not found in the callus culture of the control. Conclusions These findings suggest that γ-radiation combined with Phe can improve the metabolism of S. marianum L. and could be used to produce such valuable metabolites on a commercial scale

    Synthesis of Some New Pyridazine Derivatives for Anti-HAV Evaluation

    No full text
    4-(2-(4-Halophenyl)hydrazinyl)-6-phenylpyridazin-3(2H)-ones 1a,b were prepared and treated with phosphorus oxychloride, phosphorus pentasulphide and ethyl chloroformate to give the corresponding chloropyridazine, pyridazinethione, oxazolopyridazine derivatives 2–4, respectively. Compound 2 reacted with hydrazine hydrate to afford hydrazinylpyridazine 7. The reaction of 4-(2-(4-chlorophenyl)hydrazinyl)-3-hydrazinyl-6-phenylpyridazine (7) with acetic anhydride, p-chlorobenzaldehyde and carbon disulphide gave the corresponding pyridazinotriazine derivatives 8–10. On the other hand, 5-(4-chlorophenylamino)-7-(3,5-dimethoxybenzylidene)-3-phenyl-5H-pyridazino[3,4-b][1,4]thiazin-6(7H)-one (11) was prepared directly from the reaction of compound 3 with chloroacetic acid in presence of p-chlorobenzaldehyde. Compound 11 reacted with nitrogen nucleophiles (hydroxylamine hydrochloride, hydrazine hydrate) and active methylene group-containing reagents (malononitrile, ethyl cyanoacetate) to afford the corresponding fused compounds 12–15, respectively. Pharmacological screening for antiviral activity against hepatitis A virus (HAV) was performed for the new compounds. 4-(4-Chlorophenylamino)-6-phenyl-1,2-dihydropyridazino[4,3-e][1,2,4]triazine-3(4H)-thione (10) showed the highest effect against HAV
    corecore